

Сцинтилляционные материалы – настоящее и будущее

А.В.Гектин

Институт сцинтилляционных материалов, Харьков, Украина

- История и эволюция сцинтилляторов
- В поисках идеального сцинтиллятора
- Каналы потерь энергии
- Понимание растет, предсказуемость отстает
- Альтернативные технологии
- Можно ли получить дешевый сцинтиллятор?

История развития сцинтилляционных материалов

- История и эволюция сцинтилляторов
- В поисках идеального сцинтиллятора
- Каналы потерь энергии
- Понимание растет, предсказуемость отстает
- Альтернативные технологии
- Можно ли получить дешевый сцинтиллятор?

Мечта инженера... Потребительские цели

Optimal scintillator

Effective = efficient + available + cheap

efficient ~ 100.000 ph/MeV, 3% resolution (662 keV) available ~ size 400 mm cheap ~ 3-4 \$/cc

Особенности новых и классических сцинтилляторов ИСМАРТ - 2014

Новинки разработок сцинтилляционных материалов (см также :

П.Жмурин, И.Немченок - Пластмассовые сцинтилляторы

О.Сидлецкий – Оксидные сцинтилляторы

Н.Ширан – Галоидные сцинтилляторы

Наиболее эффективные галоидные сцинтилляторы

Crystal	ρ g/cm³	Lum λ, nm	LY ph/Mev	R, % Cs ¹³⁷	Decay т, ns	Hygro- scopy	References
Cal ₂ :Eu	3.96	467	110.000	5,2	1.000	strong	Cherepy, Moses,
Srl ₂ :Eu	4.55	435	115.000	2.6	1.500	strong	Derenzo, Bizarri, Bourret et al
Ba ₂ Csl ₅ :Eu	4.9	435	102.000	2.55	383;1.500	medium	2007 - 2012
SrCsl ₃ :Eu	4,25	458	73.000	3.9	2.200	medium	Zhuravleva et al. 2012
BaBrl :Eu	5.2	413	97.000	3,4	500	low	Bizarri et al. 2011
Nal : Tl	3.67	415	44.000	5.6	230	strong	
Csl : Tl	4.53	560	56,000	6.0	980	no	
Csl : Na		420	46,000	6.4	600	low	

Амплитудные спектры некоторых новых сцинтилляторов (¹³⁷Cs)

BaBrl:Eu

BaBrCl:Eu

LBNL, USA Bourret, Derenzo, Bizarri et al. 2009-2012

Все новое – хорошо забытое старое... (Еи-легированные сцинтилляторы) (history and reality)

Luminescence study 1948 - 1975		Nev sev	New demands have led to discovery several new Eu-doped scintillators		
LiCl :Eu	Lehmann,1975				
Lil :Eu	il :Eu Murray,1958		New scintillators 2007 - 2013		
Cal ₂ :Eu Hofstadter, 1963					
	Lyskovich,1970		Cal ₂ :Eu	LLNL, LBNL, USA	
CaF ₂ :Eu	Butement,1948		Srl ₂ :Eu	Cherepy, Moses et al.	
SrCl ₂ :Eu			Ba ₂ Csl ₅ :Eu	2007 - 2009	
SrBr ₂ :Eu	Lehmann,1975		BaBrl:Eu	LBNL, USA	
Srl ₂ :Eu				Bourret, Derenzo et al. 2010	
Srl ₂ :Eu	Hofstadter, 1968,		BaFI:Eu		
scintillator	US Patent,3373279		SrCsl ₃ :Eu	SMRC, Tennessee, USA,	
			CsEul ₃	Zhuravleva, Melcher	
				et al.2010	

Cs₃Eul₅

Ce doped Oxide Scintillators

Crystal	Density, g/cm3	Light yield, phot/MeV	Energy resolution, % (¹³⁷ Cs, 662 KeV)	Decay time, ns (γ-exc.)	Afterglow, % (after 5 ms),
Gd ₂ SiO ₅ (GSO)	6.7	8000- 11000	9 – 11	50	0.02
Lu ₂ SiO ₅ (LSO)	7.4	25000- 30000	7.3 – 9.7	40	> 1
Lu ₂ Si ₂ O ₇ (LPS)	6.2	26000	9.5	38	~0.02
Y ₃ Al ₅ O ₁₂ (YAG)	4.55	24000	7.3	85 + slow	ND
Lu ₃ Al ₅ O ₁₂ (LuAG)	6.7	12500	ND	44	ND
YAIO ₃ (YAP)	5.35	21000	6.7	27	ND
LuAIO ₃ (LuAP)	8.34	11000	14	16 + slow	ND

Рекорды оксидных сцинтилляторов

$Ce:Gd_3(Al,Ga)_5O_{12}$

ИСМА

56000 фот/МэВ

Furukawa&Yoshikawa Lab

Ливерморская лаборатория R=4.5 % на 662 кэВ!

Fig. 5. Gamma spectra of ^{60}Co using 1 in 3 scintillators of $SrI_2(Eu)$ GYGAG(Ce) and NaI(Tl).

Максимальный сцинтилляционный выход

Scintillator efficiency:

 $N_{ph} = \beta S Q$

- E_{γ} quantum energy
- $E_{e-h} = \sim 2.4 E_g$
- **S** energy transfer efficiency
- **Q** luminescence center efficiency

 β – e-h creation efficiency is a key to the new material search and investigation

Q is ~ 1 for many typical activators, Ce, Eu etc

S is also ~1 for many hosts.

1-5% of uniform distributed activator minimizes the transfer length to 2-5 a (lattice parameters)

P.Dorenbos, SCINT, 2009

Фундаментальные пределы выхода сцинтилляций

Фундаментальные пределы

[P.Dorenbos, 2009]

Пределы для разный квантовых выходов электронно дырочных пар

Пределы для типичных сцинтилляторов на основе **NaI** и **CsI**кристаллов

Experimental data are far from theoretical limit for NaI and CsI based crystals

Energy gap, eV

Crystal	E _g , eV	LY, ph/Mev theor.	LY, ph/Mev exp.
Nal (77K)	E 0	96.000	80.000
Nal:TI (RT)	0.0	00.000	45.000
Csl (77K)			100.000
CsI:TI (RT)	6.1	82.000 56.0 46.0	56.000
Csl:Na (RT)			46.000

✓ Pure NaI and CsI possess extremely high photon yield at LNT [V.Sciver, 1958; Persyk, 1980; Moszynski et al, 2010]

Both NaI and CsI could be the source of efficient scintillators with optimal activator !

- История и эволюция сцинтилляторов
- В поисках идеального сцинтиллятора
- Каналы потерь энергии
- Понимание растет, предсказуемость отстает
- Альтернативные технологии
- Можно ли получить дешевый сцинтиллятор?

Куда девается энергия поглощенного кванта?

 $N_{ph} = \beta S Q$

A.Vasil'ev, A.Gektin

Преобразование энергии в широкозонных диэлектриках

A. Vasil'ev, 2014

Разлет и термализация электронно дырочных пар

	R _{Ons} , 300K	Yield, 300K	Yield, 77K
Csl	9.87 nm	0.24	0.44
Nal	9.05 nm	0.34	0.58

- История и эволюция сцинтилляторов
- В поисках идеального сцинтиллятора
- Каналы потерь энергии
- Понимание растет, предсказуемость отстает
- Альтернативные технологии
- Можно ли получить дешевый сцинтиллятор?

Spatial track structure for e-h Onsager recombination stage for small thermalization radius

'Real' track structure

Onsager radius10 nm

Regions created by different virtual photons are overlapped

A. Vasil'ev

Spatial track structure for e-h Onsager recombination stage for large thermalization radius

'Real' track structure

Onsager radius10 nm

* Results with new Hamamatsu super-bialkali R6231-100 PMT

Significantly higher number of detected photons

Resolution improvement is marginal

$$R_{\rm stat} = 2.35 \sqrt{\frac{1+0.15}{N_{dph}}}$$

YAIO₃:Ce, $Lu_3AI_5O_{12}$:Pr, $LaCI_3$:Ce, $LaBr_3$:Ce, SrI_2 :Eu are reasonably close to fundamental limit.

Как улучшить эффективность сцинтилляторы?

- История и эволюция сцинтилляторов
- В поисках идеального сцинтиллятора
- Каналы потерь энергии
- Понимание растет, предсказуемость отстает
- Альтернативные технологии
- Можно ли получить дешевый сцинтиллятор?

В чем проблема?

История первых сцинтилляторов

1952 – Anger Algorithm 1963 – Gamma-camera prototype

Large Nal(TI) needs

Harshaw Chemical Company (founded 1890, Cleveland, Ohio)

Dr.Carl Swinehart In Harshaw from 1932 to 1990

R&D supervisors !!! :

Prof. R.Hofstadter (Stanford)

and Dr. D.Stockbarger (MIT)

Scanned at the American Institute of Physics

Две альтернативы в промышленном подходе

1. Increase of crystal / crucible diameter

Czochralski

- increased power input
- melt turbulences

2. Lengthening of crystal / melt height

VGF

- increased interaction with ampoule
- increasing melt convection

P.Rudolf, IWCGT 2008

Кремний – как пример развития технологий

From Principles to Practice

Nal(TI) Industrial growth

Hygroscopicity is not a problem!

Si – large size crystal growth

Si - industry is an example of efficient and cost reasonable crystals production

- История и эволюция сцинтилляторов
- В поисках идеального сцинтиллятора
- Каналы потерь энергии
- Понимание растет, предсказуемость отстает
- Альтернативные технологии
- Можно ли получить дешевый сцинтиллятор?

Лабораторное качество растет (2007→2012),

но технологии - нет

	2007 -	2009	2011 - 2014		
Crystal	LY	R, %	LY	R, %	
	ph/Mev	Cs ¹³⁷	ph/Mev	Cs ¹³⁷	
SrI ₂ :Eu	115.000	2.6	115.000	2.6	
Ba ₂ CsI ₅ :Eu	97.000	3.8	102.000	2.55	
SrCsI ₃ :Eu	65.000	5.2	73.000	3.9	
BaBrI:Eu	81.000	4.8	97.000	3,4	

Many AE halides possess with efficiency about fundamental limit

Selection of one (best) scintillator has to base on the technology advantages

Srl₂:Eu : Совершенство сцинтиллятора в зависимости от стоимости сырья

Srl₂. Raw material cost depending on purity

(Lab level)

■ 5.8

4.5

99,95 Purity, %

2.6

100

Srl₂:Eu. Energy resolution vs raw material purity

Примерные стоимости коммерчески доступных сцинтилляторов

100 \$/сс для LaBr3:Се – отражение отсутствия прмышленной технологии

Crystal cost structure (Si)

- 68% raw material
- 10% crucible
- 8% system cost
- 4% labor cost
- 4% power
- 6% other

<u>Oxides</u>

20% - crucible 17% - power

2010 prices

Заключение

- 65 лет разработок новых сцинтилляторов показывают непрерывный прогресс, но не достижение идеала
- Отсутствие «универсального» сцинтиллятора определяет многообразие выбора оптимального решения
- Понимание физики процессов растет, а предсказуемость результата по прежнему низкая
- Альтернативных технологий много и результаты схожи.
 Важно стоимость сцинтиллятора определяется прежде всего стоимостью сырья

Благодарю за внимание !