

# ИНЖЕНЕРИЯ СЦИНТИЛЛЯЦИОННЫХ МАТЕРИАЛОВ И РАДИАЦИОННЫЕ ТЕХНОЛОГИИ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ

12 - 16 октября 2014

# Тема: «Влияние условий получения поликристаллов стильбена на их оптические и сцинтилляционные свойства»

<u>Лазарев И.В.</u>, Караваева Н.Л., Тарасенко О.А., Тарасов В.А.

Институт сцинтилляционных материалов НАН Украины



### Цель работы:

### Определение оптимальных технологических параметров получения поликристаллов стильбена

- •Изучения влияние температуры прессования
- •Изучения влияние давления прессования
- •Изучения влияния параметров получения сырья



## Преимущество органических сцинтилляционных материалов


Органические сцинтилляторы

Низкая атомная масса

Низкая вероятность обратного рассеивания регистрируемых заряженных частиц



Хорошие детекторы короткопробежных излучений (альфа - и бета- частицы).

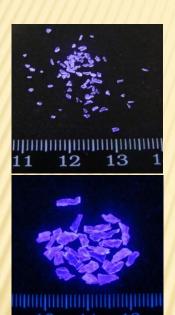


Негигроскопичны

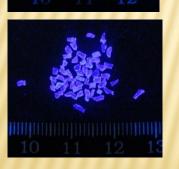
Наиболее эффективны для разделения частиц по форме импульса (PSD)



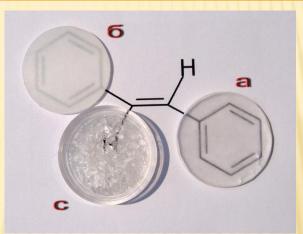
## **Актуальность задач создания органических поликристаллов**


Недостатки органических монокристаллов

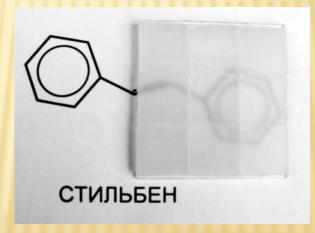





### ГРАНУЛЫ СТИЛЬБЕНА (Исходный материал)


#### СЦИНТИЛЛЯТОРЫ (Полученные из гранул)




- Размер гранул 0,9-1,0 mm.
- Размер гранул более 3,0 мм.



Оптимальный размер гранул 2,0 - 2,4 мм.\*



- а) Монокристалл
- b) Поликристалл, полученный методом горячего прессования
- с) Композиционный сцинтиллятор



Поликристаллический мозаичный детектор

5

Горбачева Т.Е., Лебединский А.М., Лазарев И.В., Паникарская В.Д., Косинов Н. Н., Федоров А.Г. Поликристаллические сцинтилляторы на основе стильбена и их свойства // Оптический журнал. — 2012. — Т. 79, № 10. — С. 86-90.



### ОБОРУДОВАНИЕ



Ручной пресс



Пресс-форма



Нагреватель



### Порядок выполнения работы





### Порядок выполнения работы







Ħ

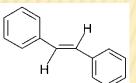


Фиксация пресс-формы

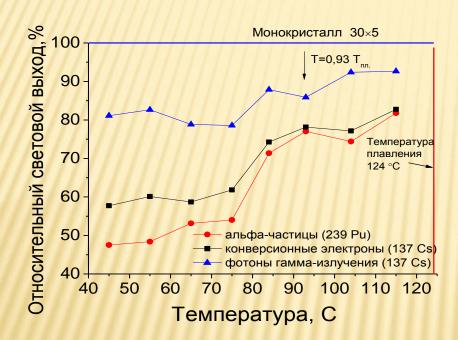
5



Установка в нагреватель

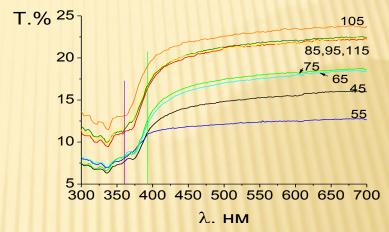

6



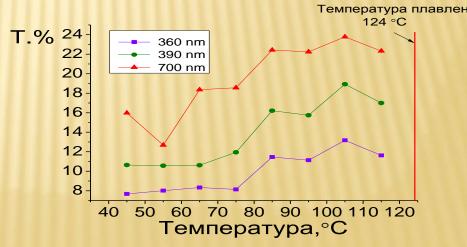

Размещение под прессом



### ЗАВИСИМОСТЬ ОТНОСИТЕЛЬНОГО СВЕТОВОГО ВЫХОДА И ОПТИЧЕСКОГО ПРОПУСКАНИЯ ОТ ТЕМПЕРАТУРЫ



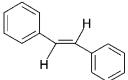

#### Давление: 100 МРа



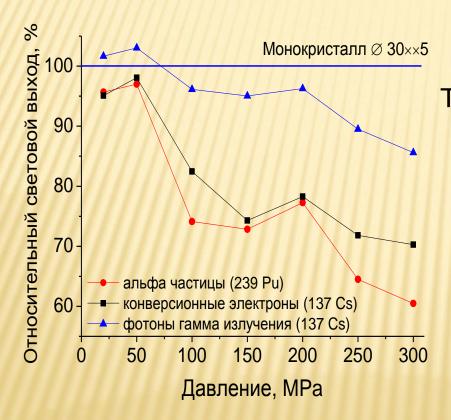

Зависимость относительного светового выхода от изменения температуры для различных видов возбуждения

#### Т – оптическое пропускание в % отн. воздуха

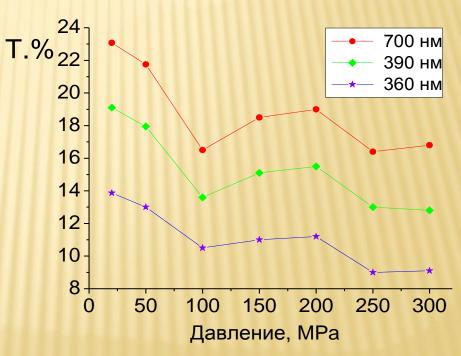



Зависимость оптического пропускания образцов от изменения длины волны проходящего света




Зависимость оптического пропускания образцов от изменения температуры

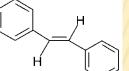



# ЗАВИСИМОСТЬ ОТНОСИТЕЛЬНОГО СВЕТОВОГО ВЫХОДА И ОПТИЧЕСКОГО ПРОПУСКАНИЯ ОТ ДАВЛЕНИЯ



Температура: 100 °C Размер образцов: Ø – 30 мм, толщина - 5 мм.



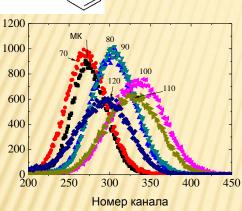

Относительный световой выход как функция изменения давления

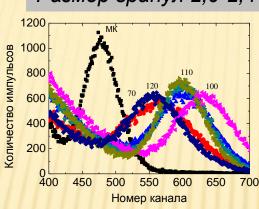


Оптическое пропускание как функция изменения давления



### ЗАВИСИМОСТЬ ОТНОСИТЕЛЬНОГО СВЕТОВОГО ВЫХОДА И ОПТИЧЕСКОГО ПРОПУСКАНИЯ ОТ ТЕМПЕРАТУРЫ

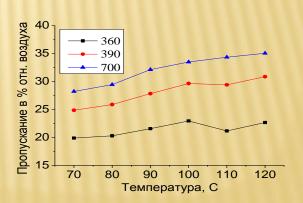




Количество импульсов

Давление: 30 МРа

Размер образцов: Ø – 30mm, толщина - 3 mm.

#### Размер гранул 2,0-2,4 мм.



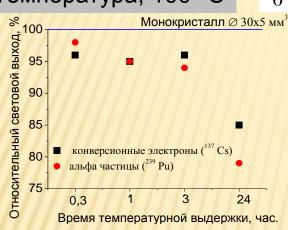



Зависимость оптического пропускания образцов от изменения длины волны проходящего света

Гранулы дробленного МК а) при возбуждении альфа-частицами б) при возбуждении конверсионными электронами






Зависимость оптического пропускания образцов от изменения температуры



# ЗАВИСИМОСТЬ ОТНОСИТЕЛЬНОГО СВЕТОВОГО ВЫХОДА ВЫХОДА И ОПТИЧЕСКОГО ПРОПУСКАНИЯ ОТ ВРЕМЕНИ ПРЕССОВАНИЯ





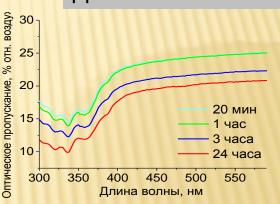


 $t_0$  — время спекания

 $r_{\scriptscriptstyle 0}$ — начальный радиус поры

k – постоянная Больцмана

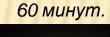
Т – температура спекания


а – параметр решетки

D – коэффициент

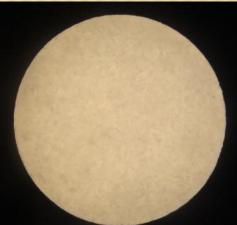
самодиффузии

у – поверхностное натяжение


#### Давление: 30 МПа



Зависимость относительного светового выхода от времени температурной выдержки


Зависимость оптического пропускания от изменения длины волны проходящего света при различной продолжительности процесса прессования.







3 часа



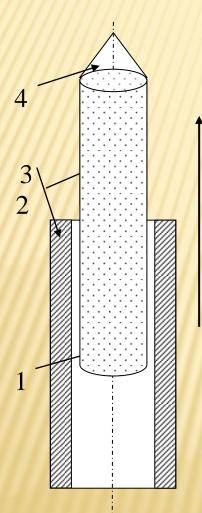
24 часа



#### Характеристики образцов при разных условиях получения монокристаллических гранул

| <b>№</b><br>п/п | Способ получения гранул для изготовления поликристалла                                                      | Относительный<br>световой выход, % |                   | Т в % от<br>воздуха |
|-----------------|-------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|---------------------|
| 9///            |                                                                                                             | <sup>239</sup> Pu                  | <sup>137</sup> Cs | для λ, 390<br>нм    |
| (////           | Эталон, монокристалл стильбена                                                                              | 100                                | 100               | 76,6                |
| 1               | Дробление монокристалла                                                                                     | 126,6                              | 123,9             | 32,0                |
| 2               | Дробление поликристаллического слитка, полученного в результате очистки методом направленной кристаллизации | 119                                | 114,6             | 31,0                |
| 3               | Дробление поликристаллического слитка, полученного в результате очистки методом зонной плавки               | 132,9                              | 126,3             | 35,5                |
| 4               | Перекристаллизация из органического растворителя (1,2-дихлорэтан)                                           | 123,0                              | 119,5             | 29,1                |

Размер образцов: Ø – 30 мм, толщина - 2 мм.


Размер гранул 2,0-2,4 мм.

Режимы прессования: Давление 30 МПа Температура 100°C



#### УРАВНЕНИЕ ПРОЦЕССА НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ

#### НАПРАВЛЕННАЯ КРИСТАЛЛИЗАЦИЯ



Обозначения:

- 1) жидкая фаза
- 2) твердая фаза
- 3) нагреватель
- 4) контейнер

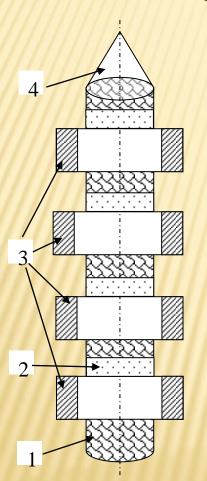
$$d \approx 10^{-3} - 10^{-4} \text{ см}$$
 $D \approx 10^{-5} - 10^{-4} \text{ см}^2$ 
 $d/D \approx 10^4 \text{ см/сек}$ 

Уравнение Галливера — Шейла (Галливера-Пфанна)

$$C = k_0 C_0 (1 - g)^{k_0 - 1}$$

k<sub>0</sub> - равновесный коэффициент распределения g — относительная доля затвердевшей жидкости

Уравнение Бартона-Прима-Шлихтера


$$k = k_0 \frac{1}{k_0 + (1 - k_0) \exp(fd/D)}$$

k - эффективный коэффициент распределения f — скорость роста D —коэффициент диффузии d — толщина диффузионного слоя



#### УРАВНЕНИЕ ЗОННОЙ ПЛАВКИ

#### ЗОННАЯ ПЛАВКА

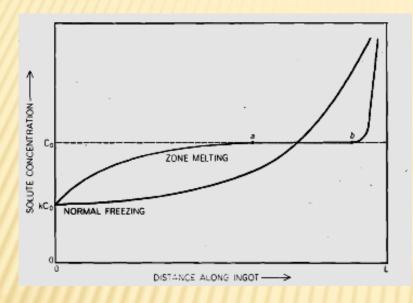


Уравнение зонной плавки для одного прохода

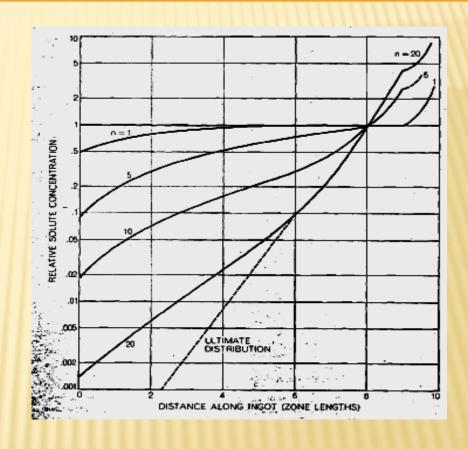
$$C/C_0 = 1-(1-k)e^{-kx/l}$$

Уравнение зонной плавки для n проходов

$$C_n(x) = C_n(L-l) \left[ \frac{L-x}{l} \right]^1$$


- L длина образца
- I длина расплавленной зонны
- х длина участка твердой фазы
- п количество проходов зоны

#### Обозначения:


- 1) жидкая фаза
- 2) твердая фаза
- 3) нагреватель
- 4) контейнер



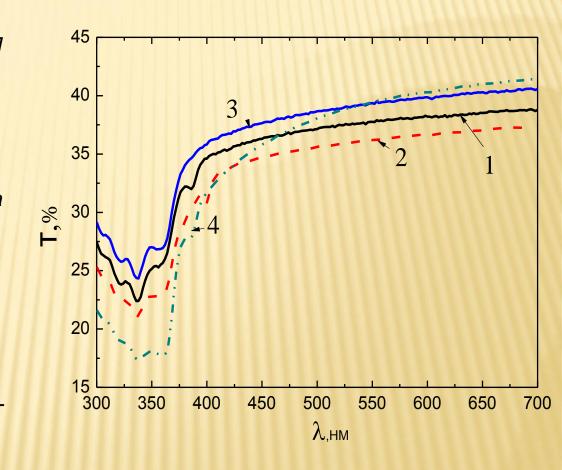
#### ЭФФЕКТИВНОСТЬ ОЧИСТКИ ДЛЯ РАЗНЫХ МЕТОДОВ



Распределение примеси, полученное после очистки методом направленной кристаллизации и после одного прохода очистки методом зоной плавки.



Распределение примеси, полученное после нескольких проходов зоны очистки методом зоной плавки.




### ЗАВИСИМОСТЬ ОПТИЧЕСКОГО ПРОПУСКАНИЯ ОТ УСЛОВИЙ ПОЛУЧЕНИЯ МАТЕРИАЛА

МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛОВ СТИЛЬБЕНА:

#### На основе гранул:

- 1) путем дробления монокристалла
- 2) после очистки методом направленной кристаллизации
- 3) после очистки методом зонной плавки
- 4) Из пластин, полученных перекристаллизацией с органического растворителя (1,2-дихлорэтан)



Размер образцов: Ø – 30 мм, толщина - 2 мм.

Размер гранул 2,0-2,4 мм.

Режимы прессования: Давление 30 МПа Температура 100°C



# Значения технического и абсолютного светового выхода ( $L_{mexh}$ , $L_{aбc}$ ) и коэффициента светособирания ( $\tau_{\gamma}$ ) для монокристаллов, поликристаллических и композиционных сцинтилляторов

| Образец                   | Размеры,мм | $(L_{\text{техн}}),$ фотон/Мэв | $	au_{\gamma}$ | (L <sub>абс</sub> ),<br>фотон/Мэв |
|---------------------------|------------|--------------------------------|----------------|-----------------------------------|
| Монокристалл              | D=30,h=5   | 9687                           | 0,659          | 14700                             |
| Поликристалл              | D=30,h=3   | 10879                          | 0,735          | 14801                             |
| //                        | D=30,h=5   | 10327                          | 0,669          | 15436                             |
| //                        | D=30,h=7   | 9735                           | 0,610          | 15960                             |
| //                        | D=30,h=10  | 8157                           | 0,540          | 15105                             |
| Композицион- ный детектор | D=30,h=5   | 6965                           | 0,515          | 13524                             |
| //                        | D=30,h=10  | 5396                           | 0,372          | 14505                             |
| //                        | D=30,h=20  | 3148                           | 0,231          | 13629                             |

<sup>&</sup>quot; Н.З. Галунов, О.А. Тарасенко, В.А. Тарасов. Оптические и сцинтилляционные свойства поликристаллических и композиционных материалов на основе стильбена // Оптический журнал (подано в печать).



#### Выводы:

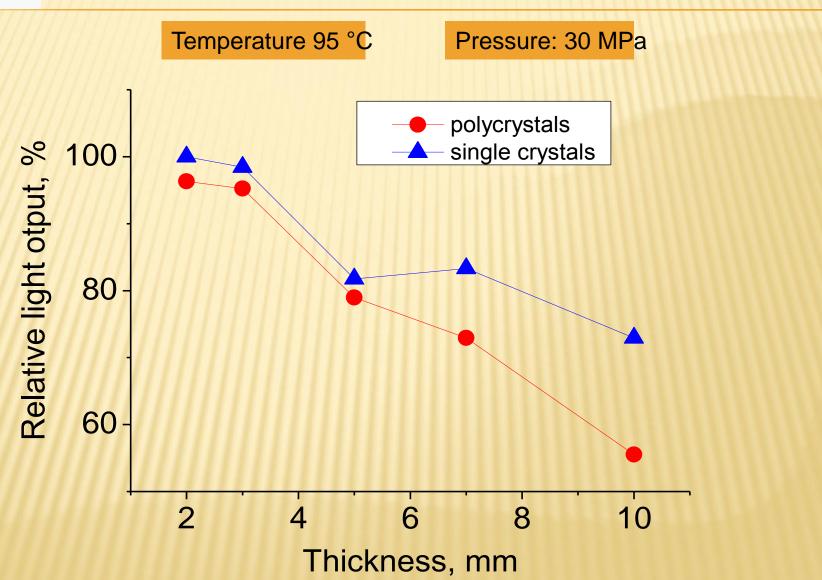
- \* Значения светового выхода и коэффициента оптического пропускания возрастают в диапазоне температур ниже 100°С. Увеличение температуры прессования не приводит увеличению значений светового выхода.
- Наиболее высокие значения светового выхода и оптического пропускания для стильбена получены при относительно невысоких значениях давления одноосного сжатия (20-30 МПа).
- Значения относительного светового выхода коррелирует со значениями оптического пропускания в диапазоне температур ниже 100°C.
- \* Гранулы стильбена, полученные при дроблении слитка сформированного в процессе очистки методом зонной плавки позволяют создавать поликристаллы с наиболее высоким световым выходом. Такие поликристаллы, дешевле в изготовлении.



# Спасибо за внимание!

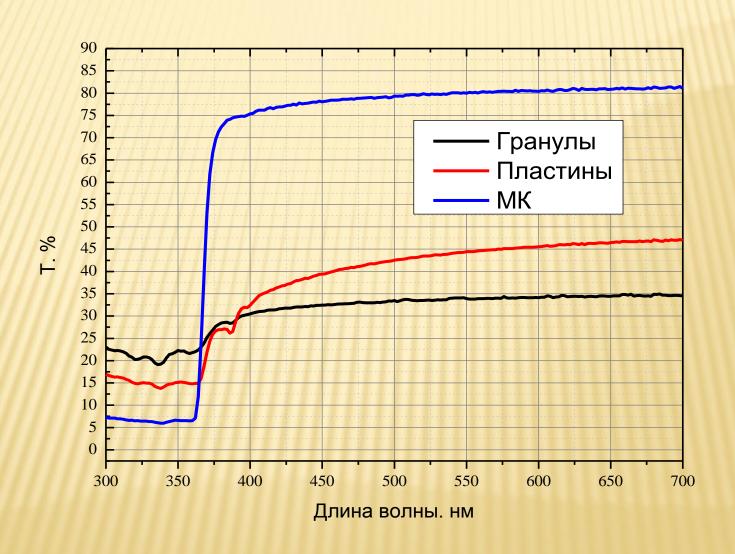





# Значения абсолютного светового выходы ( $L_{aбc}$ ) и коэффициентов светособирания ( $\tau_e$ и $\tau_a$ ) монокристаллов, поликристаллических и композиционных сцинтилляторов

| Образец                      | Размеры,мм | (L <sub>абс</sub> ),<br>фотон/Мэв | $	au_{ m e}$ | $	au_lpha$ |
|------------------------------|------------|-----------------------------------|--------------|------------|
| Монокристалл                 | D=30,h=5   | 14700                             | 0,649        | 0,635      |
| Поликристалл                 | D=30,h=3   | 14801                             | 0,838        | 0,831      |
| //                           | D=30,h=5   | 15436                             | 0,728        | 0718       |
| //                           | D=30,h=7   | 15960                             | 0,604        | 0,594      |
| //                           | D=30,h=10  | 15105                             | 0,413        | 0,415      |
| Композицион-<br>ный детектор | D=30,h=5   | 13524                             |              | 0,459      |
| //                           | D=30,h=10  | 14505                             |              | 0,310      |
| //                           | D=30,h=20  | 13629                             |              | 0,158      |

<sup>\*\*</sup> Н.З. Галунов, О.А. Тарасенко, В.А. Тарасов. Оптические и сцинтилляционные свойства поликристаллических и композиционных материалов на основе стильбена // Оптический журнал (подано в печать).




### THE DEPENDENCE OF RELATIVE LIGHT OUTPUT FROM DETECTOR THICKNESS



Light output as a function of thickness Type of excitation – alpha particles (239 Pu)

### Оптическое пропускание МК vs ПК

