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The new manifestation of conformal invariance for a massless scalar particle in a Riemannian
spacetime of general relativity is found. Conformal transformations conserve the Hamiltonian and
wave function in the Foldy-Wouthuysen representation. Similarity of manifestations of conformal
invariance for massless scalar and Dirac particles is proved. New exact Foldy-Wouthuysen Hamil-
tonians are derived for both massive and massless scalar particles in a general static spacetime
and in a frame rotating in the Kerr field approximated by a spatially isotropic metric. The lat-
ter case covers an observer on the ground of the Earth or on a satellite and takes into account
the Lense-Thirring effect. High-precision formulas are obtained for an arbitrary spacetime metric.
General quantum-mechanical equations of motion are derived. Their classical limit coincides with
corresponding classical equations.
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INTRODUCTION

Penrose [1] has discovered fifty years ago the conformal
invariance of the covariant Klein-Gordon (KG) equation
[2] for a massless scalar particle in a Riemannian space-
time added by an appropriate term describing a nonmin-
imal coupling to the scalar curvature. Chernikov and
Tagirov [3] have given clear explanations of this wonder-
ful result. Their study involved the case of a nonzero
mass and n-dimensional Riemannian spacetime. The in-
clusion of the Penrose-Chernikov-Tagirov term has been
argued for both massive and massless particles [3]. The
next step in investigation of the problem of conformal
invariance of the KG equation has been made by Acci-
oly and Blas [4]. They have performed the exact Foldy-
Wouthuysen (FW) transformation for a massive spin-0
particle in static spacetimes and have found new telling
arguments in favor of the predicted coupling to the scalar
curvature. A derivation of the relativistic FW Hamilto-
nian is important for a comparison of gravitational (and
inertial) effects for scalar and Dirac particles. However,
the transformation method used in Ref. [4] is inapplica-
ble to massless particles. In addition, it cannot be applied
for nonstatic spacetimes. This does not allow us to ob-
tain information about a manifestation of the conformal
invariance in the FW representation.

In the present work, we consider a scalar particle in
arbitrary spacetimes in the framework of general rela-
tivity (GR). To obtain a Hamiltonian form of the ini-
tial covariant KG equation not only for massive particles
but also for massless ones, we use the generalization of
the Feshbach-Villars transformation [5] proposed in Ref.
[6]. Then we fulfill the FW transformation and prove the
conformal invariance of the relativistic FW Hamiltonian
for a wide class of inertial and gravitational fields. We
derive general quantum-mechanical equations of motion

and obtain their classical limit.
We denote world and spatial indices by greek and

latin letters α, µ, ν, . . . = 0, 1, 2, 3, i, j, k, . . . = 1, 2, 3, re-
spectively. Tetrad indices are denoted by latin letters
from the beginning of the alphabet, a, b, c, . . . = 0, 1, 2, 3.
Temporal and spatial tetrad indices are distinguished by
hats. The signature is (+ − −−), the Ricci scalar cur-
vature is defined by R = gµνRµν = gµνRα

µαν , where
Rα

µβν = ∂βΓ
α
µν − . . . is the Riemann curvature tensor.

We use the system of units ~ = 1, c = 1 except for some
specific expressions.

IMPORTANCE OF THE

PENROSE-CHERNIKOV-TAGIROV TERM

The covariant KG [2] equation with the additional term
[1, 3] describes a scalar particle in a Riemannian space-
time and is given by

(�+m2 − λR)ψ = 0, � ≡ 1√−g∂µ
√
−ggµν∂ν . (1)

Minimal (zero) coupling corresponds to λ = 0, while
the Penrose-Chernikov-Tagirov coupling is defined by
λ = 1/6 [7]. For noninertial (accelerated and rotating)
frames, the spacetime is flat and R = 0.
For massless particles, the conformal transformation

g̃µν = O−2gµν (2)

conserves the form of Eq. (1) but changes the operators
and the wave function [1, 3]:

(�̃− 1

6
R̃)ψ̃ = 0, ψ̃ = Oψ. (3)

In Ref. [3], higher dimensionality was also considered.
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The corresponding classical equation

gµνpµpν −m2 = 0

is also conformal for a massless particle. It does not con-
tain any nonminimal coupling to the scalar curvature.
Therefore, the square of the classical momentum corre-
sponds to the operator −~

2(� −R/6) [3].
Chernikov and Tagirov [3] have shown the importance

of the additional term for massive particles. They have
proved that the requirement for motion to be quasiclas-
sical for a large momentum is satisfied for massive and
massless particles only when λ = 1/6. This choice of λ
has been additionally substantiated in Refs. [8, 9].
An important development of problem of the Penrose-

Chernikov-Tagirov coupling in the GR for massive par-
ticles has been made by Accioly and Blas [4]. They ana-
lyzed a dependence of the form of the FW Hamiltonian
on the value of λ and considered the diagonal static met-
ric

ds2 = V (r)
2
(dx0)2 −W (r)

2
(dr)2 (4)

with arbitrary V (r),W (r). The choice of the metric al-
lowed an exact FW transformation by the method used
in Ref. [4]. This method included the Feshbach-Villars
transformation (inappropriate for massless particles) in
order to bring the initial equation (1) to the Hamilto-
nian form. Next, nonunitary and FW transformations
resulted in the FW Hamiltonian [4]:

HFW =ρ3

√
m2V 2+Fp2F− 1

4
∇F ·∇F+Dλ(V,W ), (5)

where p = −i∇ is the momentum operator and ρi (i =
1, 2, 3) are the Pauli matrices. Only for λ = 1/6, the
Darwin term Dλ(V,W ) has the simple form and is equal
to F∆F/6 [4].
However, the important result obtained by Accioly and

Blas [4] demonstrates only a shadow of the conformal
invariance, because it does not cover the case of m = 0.
We perform general examination of the problem.

GENERALIZED FESHBACH-VILLARS

TRANSFORMATION

The general form of the covariant KG equation reads

(
∂20 +

1

g00
√−g

{
∂i,

√−gg0i
}
∂0

+
1

g00
√−g∂i

√−ggij∂j +
m2 − λR

g00

)
ψ = 0.

(6)

The curly bracket {. . . , . . .} denotes the anticommutator.
There is an ambiguity [10] in the definition of the

parameter of the Feshbach-Villars transformation. We

use the generalized Feshbach-Villars transformation pro-
posed in Ref. [6] and based on this ambiguity. In the
considered case, the transformation consists in the fol-
lowing definition of components of the wave function:

ψ = φ+ χ, i (∂0 +Υ)ψ = N(φ− χ),

Υ =
1

2g00
√−g

{
∂i,

√−gg0i
}
,

(7)

where N is an arbitrary nonzero real parameter. For the
Feshbach-Villars transformation, it is definite and equal
to the particle mass m. This generalization allows us
to represent Eq. (6) in the Hamiltonian form describing
both massive and massless particles:

i
∂Ψ

∂t
=HΨ, H=ρ3

N2+T

2N
+iρ2

−N2+T

2N
−iΥ,

T =
1

g00
√−g∂i

√−ggij∂j +
m2 − λR

g00
−Υ2.

(8)

Similarly to Ref. [4], then we perform the nonunitary
transformation Ψ′ = fΨ to obtain a pseudo-Hermitian
(more exactly, ρ3-pseudo-Hermitian) Hamiltonian: H′ =

fHf−1, H′ = ρ3H′†ρ3. In the case under consideration,

f =

√
g00

√−g, Υ′ =
1

2f

{
∂i,

√−gg0i
} 1

f
,

T ′ =
1

f
∂i
√−ggij∂j

1

f
+
m2 − λR

g00
− (Υ2)′.

(9)

Transformed operators are denoted by primes and
(Υ2)′=(Υ′)2. Tedious but simple calculations result in

H′ = ρ3
N2 + T ′

2N
+ iρ2

−N2 + T ′

2N
− iΥ′,

T ′ = ∂i
Gij

g00
∂j +

m2 − λR

g00
+

1

f
∇i

(√−gGij
)
∇j

(
1

f

)

+

√√−g
g00

Gij∇i∇j

(
1

f

)
+

1

4f4

[
∇i(Γ

i)
]2

− 1

2f2
∇i

(
g0i

g00

)
∇j

(
Γj

)
− g0i

2g00f2
∇i∇j

(
Γj

)
,

Υ′=
1

2

{
∂i,

g0i

g00

}
, Gij=gij− g0ig0j

g00
, Γi=

√−gg0i,
(10)

where the nabla operators act only on the operators in
brackets. Equation (10) is exact and covers any inertial
and gravitational fields.

FOLDY-WOUTHYUSEN TRANSFORMATION

General methods of the FW transformation for rela-
tivistic particles have been developed in Refs. [11, 12].
They belong to step-by-step methods performing the
transformation as a result of subsequent iterations. We
use the version [6] adapted to scalar particles. In this
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case, the relativistic FW transformation is carried out
with the ρ3-pseudounitary operator (U † = ρ3U

−1ρ3) [6]

U =
ǫ +N + ρ1(ǫ−N)

2
√
ǫN

, ǫ =
√
T ′. (11)

It is important that the Hamiltonian obtained as a
result of the transformation does not depend on N [6].
This shows a self-consistency of the used transformation
method. Next transformation [6] eliminates residual odd
terms and leads to the final form of the approximate rel-
ativistic FW Hamiltonian:

HFW =ρ3ǫ−iΥ′− 1

2
√
ǫ

[√
ǫ,
[√
ǫ, (i∂0+iΥ

′)
]] 1√

ǫ
. (12)

EXACT FOLDY-WOUTHUYSEN

TRANSFORMATION AND CONFORMAL

INVARIANCE

The used method ensures the exact FW transformation
for a wide class of spacetime metrics. The manifestation
of conformal invariance can also be investigated in detail.
The sufficient condition of the exact FW transforma-

tion [6, 11, 12] applied to scalar particles is given by
∂0T

′ − [T ′,Υ′] = 0. When it is satisfied, the exact FW
Hamiltonian reads

HFW = ρ3
√
T ′ − iΥ′. (13)

Equation (13) covers all static spacetimes (Υ′ = 0) and
some important cases of stationary ones.
Since general expressions for the scalar Ricci curvature

are very cumbersome, we restrict ourselves to an analysis
of several special cases. For the metric defined by Eq. (4),
the result of our calculations formally coincides with Eq.
(5). However, the case of m = 0 can now be considered.
The explicit expression for Dλ(V,W ) [4] shows the pres-
ence of conformal invariance for massless particles if and
only if λ = 1/6. In this case, conformal transformation
(2) does not change the FW Hamiltonian and the FW
wave function ΨFW . These manifestations of conformal
invariance radically differ from those for the covariant
KG equation and the corresponding wave function.
The validity of the found properties can be checked

for the scalar particle in nonstatic spacetimes. The met-
ric of the rotating Kerr source has been reduced to the
Arnowitt-Deser-Misner form [13] by Hergt and Schäfer
[14]. This form reproduces the Kerr solution only ap-
proximately. The form of the metric can be additionally
simplified due to an introduction of spatially isotropic co-
ordinates and dropping terms violating the isotropy [15]:

ds2 = V 2(dx0)2 −W 2δij(dx
i −Kidx0)(dxj

−Kjdx0), K = ω × r.
(14)

The use of the approximate Kerr metric allows us to fulfill
the exact FW transformation when V,W , and ω depend

only on the isotropic radial coordinate r. In this approx-
imation, the metric is defined by

V (r)=
κ−
κ+

+O
(
µa2

r3

)
, W (r)=κ2++O

(
µa2

r3

)
,

ω(r) =
2µc

r3
a

[
1− 3µ

r
+

21µ2

4r2
+O

(
a2

r2

)]
.

(15)

Here κ± = 1 ± µ/(2r), a = J/(Mc), µ = GM/c2; the
total mass M and the total angular momentum J (di-
rected along the z axis) define the Kerr source uniquely.
The leading term in the expression for ω(r) = ω(r)ez
corresponds to the Lense-Thirring approximation.
We can pass on from the Kerr field approximated by

Eqs. (14) and (15) to a frame rotating in this field with
the angular velocity o after the transformation dxi →
dX i = dxi+(o × r)dx0 [16]. The stationary metric of
this frame can be obtained from Eqs. (14) and (15) with
the replacement ω → Ω=ω−o. In particular, it covers
an observer on the ground of a rotating source like the
Earth or on a satellite. In this case, o = J/I, where I
is the moment of inertia. The exact FW Hamiltonian is
given by Eq. (13) where

T ′ = m2V 2 + Fp2F − 1

4
∇F · ∇F +Dλ(V,W )

+
λ

2
(x2 + y2)(Ω′

r)
2, Dλ(V,W ) = λF∆F

+(1−6λ)
V

2W 2

[
F
(
2W ′

r

r
+W ′′

rr

)
+
2V ′

r

r
+V ′′

rr

]
,

−iΥ′ = Ω · (r × p),

(16)

and derivatives with respect to r are denoted by indices.
In particular, for the Lense-Thirring metric Ω(r) =
2GJ/r3, V (r) = 1−GM/r, W (r) = 1 +GM/r.
While the metric, (14) and (15), reproduces the Kerr

solution only approximately, the derivation of the exact
FW Hamiltonian corresponding to this metric allows an
independent unambiguous determination of the value of
λ. If and only if λ = 1/6, then the conformal transfor-
mation (2) changes neither T ′ nor HFW , ΨFW . This
property is the same as for the static metric.

GENERAL EQUATIONS OF MOTION

The equations for the FW Hamiltonian allow us to
derive general quantum-mechanical equations of motion
and then obtain their classical limit (~ → 0). The
quantum-mechanical equations of motion defining the
force, velocity, and acceleration read (p0 ≡ HFW )

F i≡ dpi

dt
=

1

2

∂

∂t

{
giµ, pµ

}
+
i

2~

[
HFW ,

{
giµ, pµ

}]
,

V i ≡ dxi

dt
=
i

~

[
HFW , xi

]
, W i =

∂V i

∂t
+
i

~

[
HFW ,V i

]
.

(17)
Any commutation adds the factor ~ as compared with
the product of operators.
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It has been proved in Ref. [17] that satisfying the con-
dition of the Wentzel-Kramers-Brillouin approximation
allows us to use this approximation in the relativistic case
and to obtain a classical limit of the relativistic quantum
mechanics. Determination of the classical limit reduces
to the replacement of operators in the FW Hamiltonian
and quantum-mechanical equations of motion in the FW
representation by the respective classical quantities. The
classical limit of the general FW Hamiltonian is given by

H =

(
m2 −Gijpipj

g00

)1/2

− g0ipi
g00

. (18)

It coincides with the classical Hamiltonian derived in Ref.
[18]. The classical limit of Eq. (17) reads

V i =
Gijpj√

g00(m2 −Gijpipj)
+
g0i

g00
,

F i = pµ
∂giµ

∂t
+ g0i

∂H

∂t
+ gij∂jH + pµVj∂jg

iµ.

(19)

It coincides with the corresponding classical equations
which follow from Hamiltonian (18) and the Hamilton
equations. Thus, the quantum-mechanical and classical
equations are in the best compliance.
For example, the exact metric of a general noninertial

frame characterized by the acceleration a and the rota-
tion o of an observer is defined by V = 1+a · r, W = 1,
Ω = −o [19]. In this case, the classical limit of the equa-
tions of motion is given by (p ≡ (−p1,−p2,−p3))

V = (1 + a · r) p√
m2 + p2

− o× r,

W = −a(1 + a · r)− 2o× V − o× (o × r)

+
2a ·V + a · (o × r)

1 + a · r (V + o× r) .

(20)

Equation (20) agrees with the classical results [20].

CONFORMAL INVARIANCE FOR DIRAC AND

CLASSICAL PARTICLES

It is important to compare the conformal transforma-
tions in the GR for massless scalar, Dirac, and classical
particles. Our analysis shows that the general Hermitian
Dirac Hamiltonian for a massless particle in an arbitrary
metric in the presence of an electromagnetic field [15] is
not changed by the transformation (2). The FW trans-
formation operator for particles in strong external fields
obtained in Ref. [12] is also conformally invariant in the
case of m = 0. As a result, the Dirac and FW wave
functions, ψ and ψFW , and the FW Hamiltonian remain
unchanged. These properties of Dirac particles are the
same as for scalar ones. The Hamiltonian of massless
classical particles is conformally invariant even if its spin-
dependent part defined by Eqs. (3.18) and (4.12) in Ref.
[15] is taken into account.

In the general case, the transformation of the ini-
tial covariant Dirac equation to the Hermitian Hamil-
tonian form is performed by the nonunitary operator
fD=(

√−ge0
0̂
)1/2 [15]. Since the transformation (2) leads

to f̃D = O−3/2fD, the conformally transformed wave
function of the initial covariant Dirac equation, Ψ̃, reads

Ψ̃ = f̃−1

D ψ̃ = O3/2f−1

D ψ = O3/2Ψ. (21)

While its transformation is similar to that for the scalar
particles, the powers of O in Eqs. (3) and (21) differ.

The second-order wave equation for the Dirac parti-
cles in general electromagnetic and gravitational fields
derived in Ref. [15] includes the term describing a non-
minimal coupling to the scalar curvature R. As the def-
initions of R in Ref. [15] and the present work differ in
sign, this term corresponds to λ = 1/4.

CONCLUSIONS

The use of the generalized Feshbach-Villars and rel-
ativistic FW transformations allows us to describe the
both massive and massless scalar particles in general non-
inertial frames and gravitational fields. The present work
demonstrates the new manifestation of the conformal in-
variance for massless particles. The conformal transfor-
mation conserves the FW Hamiltonian and the FW wave
function while it changes the wave function of the ini-
tial KG equation. The similar conclusion is valid for the
Dirac particles. The nonminimal coupling to the scalar
curvature is not a unique property of scalar particles.

The results obtained in Ref. [4] and in the present
study allow us to state the general property of conformal
symmetry for massive particles. Conformal transforma-
tion (2) changes only such terms in the FW Hamiltonian
which are proportional to the particle massm. This prop-
erty is valid not only for real scalars (Higgs boson) but
also for compound ones (zero-spin atoms and nuclei).

Contemporary methods of (pseudo)unitary and non-
unitary transformations make it possible to derive new
exact FW Hamiltonians for both massive and massless
scalar particles (i) in the general static spacetime and
(ii) in the frame rotating in the Kerr field approximated
by a spatially isotropic metric. The latter result covers an
observer on the ground of the Earth or on a satellite. It
reproduces not only the well-known effects of the rotating
frame but also the Lense-Thirring effect. For an arbitrary
metric, high-precision formula (12) is obtained. The clas-
sical limit of the derived general quantum-mechanical
equations of motion coincides with corresponding clas-
sical equations.
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