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Abstract

Particles passing through a crystal under planar channeling experience transverse oscillations

in their motion. As channeled particles approach the atomic planes of a crystal, they are likely

to be dechanneled. This effect was used in ion-beam analysis with MeV energy. We studied this

effect in a bent crystal for positive and negative particles within a wide range of energies in sight

of application of such crystals at accelerators. We found the conditions for the appearance or

not of channeling oscillations. Indeed a new kind of oscillations, strictly related to the motion of

over-barrier particles, i.e. quasichanneling particles, has been predicted. Such oscillations, named

planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through

computer simulation, we studied this effect and provided a theoretical interpretation for them. We

show that channeling oscillations can be observed only for positive particles while quasichanneling

oscillations can exist for particles with either sign. The conditions for experimental observation of

channeling and quasichanneling oscillations at existing accelerators with available crystal has been

found and optimized.
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I. INTRODUCTION

Channeling is a coherent effect of penetration of charged particles in a crystal almost

parallel to its axes or planes. Charged particles under channeling conditions move in the

electric field of atoms, which builds up the averaged transverse interplanar potential and

electric field. This concept, called the continuum potential, was proposed by J. Lindhard [1],

who developed the theory of the channeling effect. In the following we consider only motion

along crystal planes called planar channeling.

The interplanar electric field induces harmonic-like transverse oscillations. These oscilla-

tions are called planar channeling oscillations, which correspond to an under-barrier motion

along the crystal planes. The planar oscillation length can be estimated using harmonic ap-

proximation:

λ = πd0

√

pv

2U0
, (1)

where d0 is the interplanar distance, p and v the particle momentum and velocity respectively,

U0 the potential well height for a straight crystal.

For positive particles, the oscillation length is nearly the same for the particles with the

same energy. This gives rise to phase correlation of different trajectories. Depending on

the difference in the oscillation lengths, such correlation can be conserved for several or, at

certain conditions, even several tens of oscillations.

Phase correlation has already been used in two circumstances. The first one is the so-

called mirroring [2, 3], i.e., the charged particle reflection from crystal planes in a straight

crystal of the length of a half channeling oscillation. The effect of mirroring of 400 GeV/c

protons, recently observed at the CERN SPS [3], can be applied to particle deflection at

future accelerators. It is also possible to observe the oscillations of over-barrier particles in

the same thin crystal. Such oscillations are described below. The second can be realized in

making a narrow plane cut perpendicularly to the crystal planes, resulting in an increase

in channeling efficiency up to 99% [4, 5]. The idea consists in focusing the particles in the

cut to the centers of interplanar channels and their consequent recapture under channeling

mode, far away from the crystal planes.

The phase correlation of different trajectories is the main condition for the observation

of planar channeling oscillations in the angular distribution behind the crystal. If different

trajectories are well correlated in their oscillations, they will synchronously approach the
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FIG. 1: Sketch of the angular particle distribution behind a bent crystal.

crystal planes. The probability of either Coulomb or nuclear interaction causing an escape

from the channeling mode, the so-called dechanneling, is the highest as the particle becomes

closer to the planes. Therefore, the distribution of penetration depth of particles in a

crystal under channeling mode will possess a periodic-like structure of peaks and deeps.

The distance between them will be proportional to the channeling oscillation length.

Planar channeling oscillations at low energies in backscattering were predicted by J.H.

Barrett [6, 7] in simulations. Later they were observed in several experiments [8–14] with

ion beams of the energy of the order of MeV and well described in [15, 16].

Channeling in a bent crystal, as proposed by Tsyganov [17], allowed the deflection of

a charged particle beam of the energy from hundreds of MeV up to tens of TeV in many

experiments [18–25]. At the moment experiments with high energy physics do not take into

account the effects of correlations particle trajectories. Indeed, much information can be

gained from this knowledge.

As an example at high energies planar channeling oscillations in crystal are transformed

to dechanneling peaks in the deflection angle distribution of the beam passed through the

crystal [26], as shown in Fig. 1. This method is applicable only for a bent crystal, allowing

to obtain the angular unfolding of the dechanneling process. As we will show below, this

possibility can be realized only for positive particles.

The aim of this paper is the prediction of another kind of oscillations in the angular distri-

bution of the particles after interaction with a bent crystal (Fig. 1). Differently from planar

channeling oscillations, this effect regards the motion of over-barrier particles at sufficiently

small angles w.r.t. the crystal planes. In analogy to the quasi-channeling motion, such kind
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of oscillations will be hereinafter named “planar quasichanneling oscillations”. We predict

the observation of the quasichanneling oscillations for both positive and negative particles.

The deflection peak angles are described by the same relation independently of particle

charge and energy. We argue that the quasichanneling peak structure is solely determined

by the crystal geometry and lattice. We provide simulation results for different energies for

different particles of both charge signs interacting with different crystal planes and dimen-

sions and provide theoretical interpretation and comparison with our simulations. We also

compare the simulated pictures of channeling and quasichanneling oscillations as well as

observe their combination for positive particles. For both cases, we propose an experimental

setup as well as an energy scaling of the setup. We finally provide the optimal experi-

mental conditions for both kinds of oscillations for either channeling or volume-reflection

orientations.

II. GENERAL BACKGROUND

A. Channeling in crystals

As mentioned above, channeling is determined as the effect of penetration of charged

particles in a crystal almost parallel to its axes or planes. It is possible to use the continuous

approximation of the potential and electric field because of small particle incidence angles

w.r.t. to the crystal planes or axes and large longitudinal velocities. In the case of planar

channeling, particles will accomplish an oscillatory transverse under-barrier motion (the

planar channeling oscillations) in the transverse interplanar potential U(x). This latter is

shown in Fig. 2 under Moliére approximation [15, 27–29] for both (110) and (111) planes

of a straight silicon crystal. This well is for positive particles. For the negative ones it

should be taken with opposite sign −U(x), which inverts the picture. The main condition

for channeling is the initial angle of a particle θin to be less than the critical angle called the

Lindhard angle [1]:

θL =

√

2U0

pv
. (2)

Effective bent crystal potential is introduced in the comoving reference system and con-

tains a centrifugal term:

Ueff(x) = U(x) + pvx/R, (3)
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FIG. 2: Interplanar potential well in a straight silicon crystal for (110) (top) and (111) (bottom)

planes for positive particles. The crystal planes precisely coincide with the maxima of the potential

for (110) or are close to for (111).

where R is the transverse bending radius of the crystal. This radius should exceed the

critical value Rcr

R

Rcr

= R
U ′

max

pv
> 1, (4)

where U ′

max is the maximal electric field in a straight channel. Otherwise the centrifugal

force will exceed the electric one and channeling will not occur any longer.

Channeled particles may escape the channeling mode due to scattering on nuclei and

electrons. This is so-called dechanneling effect. The probability of scattering depends on

the nuclear and electron densities, which are evidently higher near the crystal planes [30, 31].

For this reason, the particles with higher amplitudes of the channeling oscillations are likely

to dechannel more frequently than that with smaller amplitude.

B. Channeling oscillations

An example of dechanneling peaks, corresponding to the planar channeling oscillations in

the angular distribution behind the crystal, is shown in Fig. 3 for (110) planes. This result

was obtained by our simulations described in the next section.

The origin of the dechanneling peaks consists in a high-phase correlation of trajectories

of different particles, dechanneling close to the atomic planes where the nuclear density is

high. Note that the number of dechanneling peaks corresponds to the number of particle

approaches to a crystal plane where the probability of scattering is high. In other words, the
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FIG. 3: Angular distribution of the 7 TeV proton beam after interaction with the silicon crystal

at the channeling orientation. The simulation layout is: r.m.s. beam angular divergence θin =

0.5µrad, crystal length lcr = 2mm, bending angle θb = 20µrad, (110) planes.

dechanneling peak number in Fig. 3 is equal to the number of channeling half oscillations.

The channeling oscillation length can be evaluated directly by integration of the equation

of motion. Examples of the dependence of this length on the coordinate of the left turning

point of the trajectory are shown in Fig. 4. The corresponding potential wells are also

drown in Fig. 4. These plots represent some cases considered in the next section. Note that

the particles dechannel with highest probability only near the lower potential maximum, to

which the particles approach closer as shown in Fig. 4.

The width of the dechanneling zone is determined by the amplitude of atomic thermal

vibrations, which is equal to 0.075Å for silicon at the room temperature [15]. Indeed, it is

shown in Fig. 4 that indeed the channeling oscillation length varies rather weakly in the

dechanneling zone and Eq. (1) can be applied. Consequently there is a phase correlation

of different trajectories for positive particles in the dechanneling zone. Thus, such particles

dechannel almost at the same depths.

The decrease of the ratio of the crystal bending radius to its critical value R/Rcr re-

duces the phase correlation of the trajectories, resulting in deterioration of the structure of

dechanneling peaks as will be shown below. The length estimated by Eq. 1 becomes a bit

overestimated at small radii of curvature (see Fig. 4b). This results in a higher number of

dechanneling peaks.

The channeling oscillation length in Fig. 4 is proportional to
√
pv (like in the formula
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(1)) for fixed form of the potential well. Thereby, phase correlation should take place for

different energies of positive particles.

For the negative particles, the interplanar potential U(x) becomes inverted, resulting in

the atomic plane being in the channel center. Thus, the dechanneling zone includes all the

amplitudes of oscillations. Depending on the amplitude, the channeling oscillation length

can differ several times as is shown in Fig. 5. In addition, electrons cross crystal planes in

the middle of the channel when their angle θ is maximal in magnitude [31]. Positrons, on

the opposite, approach the planes at the minimal angle values. Consequently the transverse

energy change ∆ε⊥ for electrons is proportional to the scattering angle ∆θ while for positrons

to its square ∆θ2 [31]:

∆ε⊥ = pvθ∆θ + pv
∆θ2

2
→











pvθ∆θ, if θ → θmax;

pv∆θ2

2
, if θ → 0.

(5)

Thereby, the amplitude of electron oscillations due to scattering increases stronger for

electrons than for positrons. Thus, any phase correlation will quickly disappear and the

planar channeling oscillations for electrons will not be observable in the angular distribution.

It is also important to explain why the pattern of peaks is a sequence of a high peak

followed by a lower one (see Fig. 3). This is explained by an asymmetry of the potential

well displayed in Fig. 4. In particular, the dechanneling zone close to the left side of the

potential is wider than the zone near the opposite reflection point. Indeed, if one takes the

dechanneling zone width to be equal to the thermal vibration amplitude (0.075Å for (110)

silicon crystal planes), one obtains the corresponding potential energy difference ∆U ∼ 2 eV.

Its value as well as the dechanneling zone width does not considerably change for different

crystal bending and beam energies. In contrast, the width of the zone near the reflection

point xref (see Fig. 4) strongly depends on the crystal bending:

∆x ≈ ∆U/U ′

eff (xref). (6)

Through the use of the numerical parameters of the potential in Fig. 4d, one obtains

∆x = 0.042Å, which is almost two times less than the thermal vibration amplitude. This

ratio explains the alternation of high and low peaks.

Planar channeling oscillations can also be observed for (111) crystal planes. The main

contribution here is due to the wider channel because the dechanneling zone introduced
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FIG. 4: The channeling oscillation length vs the left turning point of the trajectory (left column)

and the corresponding potential wells (right column) in a bent crystals:

a,d: 7 TeV protons, lcr = 2mm, θb = 20µrad, (110) planes;

b,e: 20.35 GeV positrons, lcr = 0.11mm, θb = 1600µrad, (110) planes;

c,f: 7 TeV protons, lcr = 2mm, θb = 20µrad, (111) planes. Larger channeling oscillation length

corresponds to the wider potential well.

Horizontal lines correspond to the channeling length estimation by (1). The left point placed at

x=0 indicates the coordinate of the crystal plane.
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FIG. 5: Channeling oscillation length for 20.35GeV electrons, lcr = 0.11mm, θb = 1600µrad, (110)

planes.

above is considerably narrower for the small channel as is shown in Fig. 4f. In addition,

the channeling oscillation length varies more strongly in the latter case, causing smearing

of phase correlations. The oscillation length value is also smaller for the small channel

than for the larger one. This causes reduction of the distance between the peaks, resulting

in complicated detection. Thereby, only the planar channeling oscillations in the wider

channels will be practically observable.

The appearance of dechanneling peaks is also possible for volume-captured particles when

the volume reflection orientation is set. In this case, the lower peaks will completely dis-

appear because volume capture occurs only near the left potential maximum (see Fig. 4).

For this reason, the difference between the peaks corresponds to one channeling oscillation

length for the volume reflection orientation.

The dechanneling peaks may be observed if the inter-peak half angular distance ∆ϕch

exceeds the doubled incoherent scattering angle θsc [26]:

∆ϕch

2θsc
=

λθb
4lcr

pv

13.6MeV
√

lcr/Xr (0.038 ln (lcr/Xr) + 1)
> 1, (7)

where lcr and θb are the crystal length and bending angle, respectively, Xr is the radiation

length equal to 9.36 cm for silicon. The Coulomb scattering angle was estimated according

to [32]. For the volume reflection orientation this condition will be twice softer because

half of the peaks will not appear as mentioned above. Thus, volume-reflection orientation

provides a still better conditions than that for channeling.

Another important condition is the crystal bending radius R to be larger than the critical
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one, Rcr [29]:
R

Rcr

> 1. (8)

As mentioned above, this is the condition for the channeling to occur in a bent crystal

[17, 29].

The third important condition is the angular divergence of the incident beam should not

be greater than half of the critical channeling angle θL.

θinpr.m.s. < θL/2. (9)

Indeed, the angular divergence, approaching the critical angle, results in a considerable

oscillation phase shift. Such trajectories are, of course, uncorrelated. This concerns both

channeling and volume reflection orientations.

Some sort of scaling of the channeling oscillation picture with energy can readily be

introduced. Such a scaling can be assured by the conservation of both the peak number:

npeaks =
2lcr
λ

= Const; (10)

and of the ratio of the inter-peak interval to the Coulomb scattering angle:

∆ϕch

2θsc
= Const. (11)

By substituting Eq. (1) into (10) one obtains:

lcr ∼
√
pv. (12)

Substituting further Eq. (7) into (11), using (12) and neglecting the logarithmic factor one

obtains that:

θb ∼ 1/(pv)3/4. (13)

Finally the bending radius scaling can be simply obtained from Eqs. (12) and (13):

R ∼ (pv)5/4. (14)

C. Quasichanneling oscillations

Planar channeling oscillations in backscattering experiments at low energy were observed

[8–14] while they have not been observed yet at higher energy. However, there is another
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kind of oscillations, which we predict in this paper that has not still observed under neither

regimes. This kind of oscillations manifests itself as the peaks in the angular distribution

which are close to the channeling peak (Fig. 3). Hereinafter, such new kind of oscillations

will be called planar quasichanneling oscillations.

Such oscillations have a different nature than planar channeling oscillations because the

distance between them is smaller than the lowest possible half channeling length. In addition,

the location of the peaks is almost the same for particles with different charge signs. As we

will show below, this indicates the involvement of over-barrier particles.

A qualitative explanation can be obtained from the analysis of the over-barrier trajecto-

ries, shown in Fig. 6, highlighting the dependence of the particle deflection angles in the

laboratory reference system on z:

θXdefl =
z
R
−
√

2(ε⊥−Ueff (x(z,ε⊥)))

pv
, (15)

where ε⊥ is the initial transverse particle energy, x and z the particle transverse and longi-

tudinal coordinates respectively. At z = lcr, the first term in Eq. (15) becomes z/R = θb

and θXdefl is the observed particle deflection angle as in Fig. 3.

Let us consider the ideal trajectories without any incoherent scattering or energy losses.

Also, only dechanneled particles are considered because usually most of the particles initially

not captured under channeling state will not achieve the angles close to the channeling

direction. Let us also fix the starting point of the over-barrier trajectories in a point above the

potential barrier, neighboring the dechanneling point (in Fig. 6 the point is indicated as x =

0). We will vary randomly only the longitudinal starting coordinate. Fig. 6 demonstrates

that the trajectories tend to group together at certain phases into parallel lines separated

by one over-barrier oscillation. Such concentration will generate a new series of peaks in the

angular distribution at the crystal exit.

All the lines formed are parallel to the line representing the angle of bending of a crystal

plane:

θXdefl = z/R. (16)

The main reason for their appearance, is correlation of different over-barrier trajectories even

in the first potential well (see Fig. 6). These trajectories have almost the same oscillation

lengths with the only exception of a small region near the closest barrier to the point of
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FIG. 6: The effective potential Ueff (top) and the ideal over-barrier trajectories (middle and

bottom) (angle (15) vs longitudinal coordinate) of 20.35 GeV electrons (left column) and for

positrons (right column) without scattering. The transverse starting point of trajectories is fixed

at x = 0, the longitudinal one varies randomly. The transverse energy varies in the range of several

eV above the potential barrier at x = 0. The crystal parameters are: lcr = 60µrad, θb = 400µrad,

(110) planes. The longitudinal coordinates in bottom figures are close to the crystal end.

dechanneling. Therefore, all the over-barrier trajectories differ only by a starting longitudinal

coordinate which varies along a bent crystal plane parallel to the line (16) according to Eq.

(15).
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The oscillation length of different trajectories is almost the same by the reason that

the main contribution to the quasichanneling peaks is due to dechanneling process. The

transverse energy of dechanneled particles is limited by Coulomb scattering and, therefore,

can exceed the closest potential barrier, at least by several eV. The relative change of the

n-th over-barrier oscillation length can be calculated by formula:

∆λn

λn
= ∆ε⊥

2

∫ nd0
(n−1)d0

dx

(ε
⊥

−Ueff (x))3/2

∫ nd0
(n−1)d0

dx√
ε⊥−Ueff (x)

. (17)

As a rule, this ratio does not exceed ∼ 10% for dechanneled particles. However, this also

relates to the particles, initially not captured under the channeling mode but achieved the

deflection angle close to the channeling direction. Thereby, they must provide the peaks of

quasichanneling oscillations to the same locations as the dechanneled ones.

The location of parallel lines can be found by the condition that the tangent lines

dθXdefl/dz to the trajectories are parallel to the line (16). This condition transforms to:

dUeff

dx
= 0, (18)

which implies the locations of local minima and maxima of the potential Ueff (see Fig.

6). Therefore, the trajectories group between the minima and maxima as shown in Fig. 6

because dθXdefl/dz ≃ z/R.

By application of the potential values Ueff for minima and maxima and using Eq. (15),

one obtains the equations of two parallel lines which are the boundaries of trajectory con-

centrations:

θXdefl = z/R −
√

2V0n
pv

;

θXdefl = z/R −
√

2(V0n+∆V )
pv

,
(19)

for the potential maxima and minima respectively. ∆V is the potential energy difference

between the neighboring local maximum and minimum while V0 is the difference between

two neighboring maxima of the potential [29]:

V0 = pvd0/R. (20)

By substituting Eq. (20) in (21) and taking into account z = lcr at the crystal exit one

finally obtains the location of the bounds containing the peaks of quasichanneling oscillations

13



in the deflection angle distribution:

θXdefl = θb −
√

2d0n
R

;

θXdefl = θb −
√

2d0n
R

+ 2∆V
pv

,
(21)

Negative particles tend to be closer to the first angle while the positive to the second one,

where the derivative dθXdefl/dz is smoother. The angular difference between neighboring

peaks ∆ϕqch can be found from these equations as:

∆ϕqch =
√

2d0
R

+ (θb − θXdefl)2 − (θb − θXdefl). (22)

For large n, this equation reduces into:

∆ϕqch ≈ d0
R(θb−θXdefl)

. (23)

It is important to stress that such formula does not depend on the particle energy but only

on crystal characteristics, such as interplanar distance and bending radius.

Being an over-barrier effect, quasichanneling oscillations can be experimentally observed

for any angular divergence less, of course, than the crystal bending angle. The main con-

straint here is the limited statistics of the over-barrier particles in the angular distribution,

which depends in turn on channeling efficiency. Therefore, short crystals are preferred to

provide the highest efficiency.

In order to find the extremal conditions where the observation of quasichanneling oscil-

lations is still possible, one can estimate only the first oscillation forming the closest peak

to the channeling one. For the initial angle θXdefl in (23) one should take the left boundary

of the channeling peak to be θb − θL. In this case one obtains the highest possible angular

difference between the channeling peak and the peak of a quasichanneling oscillation:

∆ϕqch

2θsc2
=

d0
2RθL

pv

13.6MeV
√

λ1

Xr

(

0.038 ln
(

λ1

Xr

)

+ 1
) > 1. (24)

For an estimate, λ1 can be roughly estimated to be equal to half of the channeling oscillation

length (1), i.e. λ1 ∼ λ/2.

In order to observe quasichanneling oscillations, one should also satisfy the condition of

the bending radius to be larger than the critical one (8).

Since Eq. (24) for quasichanneling oscillations depends on energy like Eq. (13) for

channeling oscillations, they scale on energy in the same way.
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The ratio of maximal interpeak distance of quasichanneling oscillations to that of chan-

neling oscillations can be estimated by using (1), (7), (9) and (24), resulting in:

∆ϕqch

∆ϕch
<

2

π
. (25)

For volume reflection, the analogous ratio will be two times lower. Thus, the width between

the peaks for channeling oscillations is considerably higher than for the quasichanneling

ones. However, the different role of multiple scattering (compare (7) and (24)) and angular

divergence makes the conditions for observation of quasichanneling generally more preferable.

III. SIMULATION RESULTS

For a deeper understanding of both channeling and quasichanneling oscillations we per-

formed a numerical simulation.

The program CRYSTAL [26, 33] was applied for simulations. This program was vali-

dated in particular in the simulation of single-pass experiments at CERN SPS [34], in which

a good agreement of experimental and simulation results was achieved [26]. The model

implemented in this program [4, 30, 31, 35] was also successfully applied to the explanation

of different experiments on channeling radiation [24, 25, 35]. The effect of multiple volume

reflection in a single-piece bent crystal was also predicted in the frame of this model [36–38]

and demonstrated in several experiments [39–41]. The code is based on charged particles

trajectory Monte Carlo simulation in a continuum potential of crystal planes or axes. Be-

sides, Coulomb single- and multiple-scattering on either nuclei or electrons is simulated.

In addition, the simulation of nuclear scattering is implemented. It is important to stress

that realistic trajectory simulation “from the first principles” without any simplifications

and approximations is essential for dechanneling, rechanneling and volume-capture effects.

In fact, only realistic simulation allows one to predict the new effects, in particular those,

described in this paper.

The simulations were performed for a single passage of charged particles through the

crystal. The typical statistics was 106 particles. The angular divergence of the initial beam

was set to be less than θL/4. The bent crystal parameters were chosen to fulfil the conditions

(7-8, 24) for clear observation of both channeling and quasichanneling oscillations.

The simulation of the distributions of the particle angles after interaction of particles

15



FIG. 7: The angular distributions of particles after interaction with the silicon crystal at the

channeling orientation. Vertical lines indicate the zone of quasichanneling oscillations manifestation

calculated by Eq. (21). The simulation layouts were as follows: (a) LHC, 7 TeV protons, r.m.s.

beam angular divergence θin = 0.5µrad, lcr = 2mm, θb = 20µrad, (110) planes; (b) SPS, 150 GeV

positrons and electrons, θin = 3.5µrad, lcr = 0.29mm, θb = 357µrad, (110) planes; (c) the same

as the previous except the angular divergence θin = 10.5µrad; (d) SPS, 400 GeV protons, θin =

2µrad, lcr = 0.48mm, θb = 170µrad, (110) planes; (e) SLAC, 20.35 GeV positrons, θin = 10µrad,

lcr = 0.11mm, θb = 1600µrad, (110) planes; (f) the same as (b) for (111) planes.
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FIG. 8: (a) SLAC, 20.35 GeV positrons and electrons, θin = 10µrad, lcr = 60µm, θb = 400µrad,

(110); (b) the same as (g) for (111) planes.

with the crystal is shown in Figs. 7-9 for channeling and volume reflection orientations,

respectively. The energy in the simulation was chosen in correspondence to the beam energy

in currently operating accelerators.

Both channeling and quasichanneling oscillations are observable. Moreover, they are in a

good agreement with the estimations obtained above. In particular, the simulated interpeak

distance for channeling oscillations is consistent with the estimation of channeling oscillation

length (1). The highest deviation is for 20.35 GeV because in that case the bending radius

is close to the critical radius. The correlations quickly disappear also because of rather

small bending radius. As mentioned above for volume reflection, the interpeak distance

corresponds to one oscillation length, in contrast to channeling for which interpeak distance

is half of one oscillation length. As expected, the planar channeling oscillations are not

observed for negative particles.

Simulated quasichanneling oscillations agree with formulae (21-22) for both signs of par-

ticles even for the first oscillation, i.e., the closest one to the channeling peak. Vertical lines

calculated by (21) define the location of peaks for quasichanneling oscillations and their

agreement with the simulations. It is important to underline that for the case of 7 TeV

the quasichanneling oscillations are revealed not in the zones predicted by Eq. (21) but at

intersections of such zones.

It is important to emphasize that the angular difference (22-23) is on the left of the

peak located at θXdefl. The angular distance between the peaks decreases w.r.t. the angle

measured from the channeling peak. In addition, the particles in neighboring peaks undergo
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FIG. 9: The angular distributions of particles after interaction with the silicon crystal at the volume

reflection orientation for the crystal tilt −θb/2. Vertical lines indicate the zone of quasichanneling

oscillations manifestation calculated by Eqs. (21). The simulation layouts were as follows: (a) LHC,

7 TeV protons, r.m.s. beam angular divergence θin = 0.5µrad, lcr = 2mm, θb = 20µrad, (110)

planes; (b) SPS, 150 GeV positrons and electrons, θin = 3.5µrad, lcr = 0.29mm, θb = 357µrad,

(110) planes; (c) the same as (b) for the angular divergence θin = 10.5µrad for positrons; (d) SPS,

400 GeV protons, θin = 2µrad, lcr = 0.48mm, θb = 170µrad, (110) planes; (e) SLAC, 20.35 GeV

positrons, θin = 10µrad, lcr = 0.11mm, θb = 1600µrad, (110) planes; (f) the same as (b) for (111)

planes for positrons.
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more oscillations and travel longer under over-barrier state, resulting in increased scattering

angle. Because of this, only the peaks of quasichanneling oscillations near the channeling

bump can be observed. Qualitatively, this is the manifestation of condition (24).

The angular distribution of particles after their interaction with the crystal was obtained

also with the increased angular divergence of the initial beam by approximately 3/4θL.

The corresponding cases are shown in Figs. 7 and 9 for 150 GeV. Indeed, too large an

angular divergence leads to the disappearance of the peaks of planar channeling oscillations.

As mentioned above, quasichanneling oscillations do not directly depend on the angular

divergence. Thereby, such peaks remain visible.

In Fig. 7 the four upper plots represent the scaling on energy (12-13) introduced in the

previous section. The same scaling is represented in Fig. 9 for volume reflection.

Such scaling is good for the energies of the same order. In the opposite case, the radius

can approach to the critical one, when the conditions for the observation of the planar

channeling oscillations are not optimal. This is shown in Fig. 7 for channeling and in Fig. 9

for volume reflection. The obtained scaling provides a similar picture for different energies

from hundreds of GeV up to 7 TeV. At the same time, the picture for the case of 20.35 GeV

is different and not so evident because the bending radius approaches to its critical radius.

For the (111) crystal planes the picture observed is analogous to that for the (110) planes

(see Figs. 7-8). For planar channeling oscillations the interpeak distance is proportional

to the channeling length in the larger channel as shown in Fig. 4. The quasichanneling

oscillations are well described by formulae (21-22) if the interplanar distance is determined

as a transverse period being equal to 3.13Å for silicon.

IV. ON THE EXPERIMENTAL OBSERVATION OF CHANNELING AND QUA-

SICHANNELING OSCILLATIONS

In this section we provide information on possible experimental set-ups for observation of

planar channeling and quasichanneling oscillations through existing accelerators worldwide.

In order to span over different energy and charge, we considered the cases of both positrons

and electrons at SLAC (20.35 GeV) and SPS, CERN (150 GeV) and of electrons at MAMI

(855 MeV).

For successful observation, it is very important to choose the proper parameters for the
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FIG. 10: The dependence of the angular distance between the peaks corresponding to the chan-

neling (a) and quasichanneling (c) oscillations on the crystal length and the bending angle for the

positrons of 20.35 GeV. The (110) silicon planes are considered. The zone for the dechanneling

peaks observation is formed by (7-8). (b,d): the optimal zones for the same cases for the channeling

and quasichanneling oscillations respectively, the ratios in (7-8) and (24, 8) exceed two.

crystal geometry. They are provided by Eqs. (7-8) for channeling oscillations and by Eqs.

(24, 8) for quasichanneling. However, in a real experiment the angular distance between

the peaks should be as large as possible to better resolve them. All these conditions can

be visually combined in the interpeak dependence of the distance between the peaks on the

crystal length and bending angle.

Such dependence is shown in Fig. 10 for the channeling oscillations at the channeling

orientation of the energy of 20.35 GeV. White crosses mark the crystal geometry simulated

in this paper and presented in Figs. 7-8. The conditions (7-8) determine the area, where

the observation of planar channeling oscillations is allowed. In order to optimize the crystal
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parameters the ratios (7-8) should be safely taken as 2-3 times as much. For equation (7)

this choice results in a clearer picture of the peaks. At the same time, for the ratio (8), it

provides higher channeling efficiency for better statistics of the experiment.

An example of optimized zone for crystal geometry for a SLAC case is shown in Fig. 10b.

The estimates (7-8) provide a sufficiently narrow region of crystal parameters. However,

in any case a concrete experimental layout should be checked by Monte-Carlo trajectory

simulations.

Similar conclusion can be inferred by application of Eqs. (24, 8) to the plots for qua-

sichanneling oscillations. These dependencies are represented in Fig. 10 for 20.35 GeV.

White crosses in the optimal zone indicate the parameters used in this paper. Quasichan-

neling oscillations are indeed observed for our simulations for all the cases considered.

The algorithm for crystal geometry optimization remains the same as for the quasichan-

neling oscillations. The only difference is that the initial angular divergence of the beam

should be much less important than for planar channeling oscillations. The angular diver-

gence in our simulations was equal to 10 µrad, a value which may be experimentally achieved.

Thus, the SLAC case satisfies all the conditions of the observation of planar channeling and

quasichanneling oscillations.

For the SPS case, the crucial factor is the angular resolution of the detector. At energies

of the order of hundreds GeV order, the resolution of at least several microradians should

be provided. At the SPS, additional scattering by air and the silicon strip detectors con-

tributes to the measurements. This contribution can be taken into account by including the

corresponding r.m.s. scattering angle θdet to the denominator of (7) and (24):

∆ϕch

2
√

θ2sc + θ2det
> 1. (26)

The angular divergence at the SPS is expected to be higher when using secondary beams of

positrons or electrons. In this case only quasichanneling oscillations can be observed.

For electrons only quasichanneling oscillations can be observed as at the MAMI microtron

[25]. The simulation of such experiment is shown in Fig. 11. The main problem for this

experiment is crystal manufacturing. For operation of sub-GeV energies, a very short and

strongly bent crystal is required, which is at the limit of existing technologies.

(111) crystal planes provide wider angular distance between the peaks. Thus, they should

be preferable. Moreover, it is simpler to manufacture (111) bent crystal than for any di-
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FIG. 11: The angular distributions of particles after interaction with the silicon crystal at the

channeling orientation. The simulation layout is: 855 MeV electrons, θin = 50µrad, lcr = 15µm,

θb = 2000µrad, (111) planes.

rection, when strong bending is required [42]. The latter case especially relates to smaller

energies of 1 GeV order at which such crystals were successfully applied [23, 25, 43]. For

electrons (111) planes provide a deeper potential well than the (110) ones. This results in a

higher channeling efficiency which is also preferred.

V. CONCLUSIONS

The effect of planar quasichanneling oscillations in the deflection angle distribution of

particles passed through a bent crystal has been predicted. The effect of planar channel-

ing oscillations was also analyzed. Both of them possess a fine structure in the angular

distribution as visualized by Monte Carlo simulations for a wide range of energies.

The theoretical interpretation of both kinds of oscillations was proposed. Quasichanneling

oscillations appear near the direction at which channeling particles leave the crystal. They

arise due to the correlations of over-barrier oscillation lengths of dechanneled particles.

Channeling oscillations can be observed in all over the angular range of deflected particles

after interaction with a crystal. This effect arises from correlated dechanneling of particles

moving along phase-correlated trajectories under channeling mode. An equation for the

angular positions of quasichanneling peaks was found. It demonstrates the independence of

peak position on charge sign and energy.
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Since phase correlation for channeled particles is conserved only for positive particles,

the channeling oscillation peaks can not be observed for negative charges. At the same

time, since both negatively and positively charged particles may experience over-barrier

oscillations, the effect of quasichanneling oscillations can be observed for both of them.

The possibility to observe both channeling and quasichanneling oscillations is limited by

incoherent scattering of particles under over-barrier states. Both of them can be observed

if only the r.m.s. angle of incoherent scattering is twice smaller than the interpeak angular

intervals. The angular resolution of particle detectors is crucial for the observation of both

types of oscillations. However, the low angular divergence of the incident beam is necessary

only for an observation of the channeling oscillations.

The optimal conditions for experimental observation of both channeling and quasichan-

neling oscillations are also proposed. These conditions are applied to elaborate the optimal

values of crystal thickness and bending angle (radius) at SLAC, SPS, MAMI and LHC. A

comparison of (110) and (111) planar crystal orientation reveals the higher interpeak dis-

tance and higher electron channeling efficiency in the case of the latter. (111) orientation

is also preferable from the point of view of strong bending of thin crystals to observe the

predicted effects at the SLAC and MAMI energies.

Similarly to channeling oscillations, which are used in low-energy RBS experiments to

assess the quality of a crystal, channeling and quasichanneling oscillations could be used

to determine the precision of alignment of a high-energy beam with a crystal. In fact, the

pattern of the distribution of particles after interaction with a bent crystal is highly sensitive

to the beam-to-crystal alignment. This information can be used for all the applications for

which bent crystals are used in accelerators, such as beam collimation, extraction and e.m.

radiation generation.
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