СЦИНТИЛЛЯЦИОННЫЕ КРИСТАЛЛЫ ВОЛЬФРАМАТА СВИНЦА ДЛЯ ТОЧНОЙ ЭЛЕКТРОМАГНИТНОЙ КАЛОРИМЕТРИИ НА УСКОРИТЕЛЯХ С ВЫСОКОЙ СВЕТИМОСТЬЮ

М. В. Коржик, В. А. Качанов*, А. Н. Анненков**, О. В. Мисевич, А. А. Федоров

1. Введение

Разработка новых экспериментов на планируемых в 80-х гг. прошлого века к постройке ускорителях с высокой светимостью в СССР (УНК), США (SSC) и ЦЕРНе (LHC) потребовала с очевидностью создания новых технологий как в системах сбора данных, так и в конструкционных материалах для детекторов. Одной из наиболее очевидных проблем оказалось отсутствие радиационностойкого сцинтилляционного материала, сочетающего высокую тормозную способность и быстродействие для долговременной эксплуатации в интенсивных радиационных полях. В конце 80-х гг. сформировались три направления работ. Первое, развиваемое в рамках программы SSC, основывалось на разработке кросс-люминесцентных сцинтилляторов, в частности BaF₂. Были получены обнадеживающие результаты по выращиванию крупногабаритных кристаллов, однако технология радиационно-стойких кристаллов так и не была создана вследствие закрытия проекта. В рамках проекта LHC была открыта междисциплинарная интенсивная научно-исследовательская работа RD18, вылившаяся в дальнейшем в создание отдельной исследовательской коллаборации «Crystal Clear», которая провела достаточно подробные исследования широкого круга как активированных, так и самоактивированных люминесцентных неорганических соединений. Выбор был сделан в пользу CeF₃, самоактивированного сцинтиллятора. Однако, несмотря на приложенные усилия, технология крупногабаритных и радиационно стойких кристаллов фторида церия так и не была разработана, работы были свернуты в 1995 г. Отдел экспериментальной физики ИФВЭ, возглавляемый академиком Ю. Д. Прокошкиным, организовал в рамках подготовки УНК методическую работу по новым материалам и конструкционным решениям для электромагнитной калориметрии. Поскольку в то время материальное обеспечение было уже ограниченным, предпочтение на начальном этапе было отдано не широкой поисковой работе, а выработке технических требований к сцинтилляторам и выделению классов материалов, соответствующим этим требованиям.

^{*} ИФВЭ, Протвино.

^{**} Технический университет стали и сплавов, Москва.

В начале 90-х гг. высвободилось много высококвалифицированных групп из институтов, ранее занятых исследованиями по специальным тематикам. К работам была привлечена группа молодых исследователей НИИ ЯП (Минск, Беларусь), а также многочисленные организации, занимавшиеся синтезом неорганических соединений, как ВНИИСИМС (Александров), НИИ «Монокристаллов» (Харьков), НИИ «Полюс» (Москва), «Карат» (Львов) и др. Анализ и предварительные исследования показали, что наиболее перспективным классом материалов являются вольфраматы. Явным контраргументом являлось то, что среди тяжелых соединений вольфраматов были уже обнаружены и активно использовались материалы с медленно затухающими сцинтилляциями в микросекундном диапазоне как CaWO₄, CdWO₄, ZnWO₄, что полностью исключало их использование в новых экспериментах. Однако в результате проведенных исследований среди вольфраматов были установлены соединения, NaBi(WO₄)₂ и PbWO₄, с потушенной собственной люминесценцией, обусловливающей быстрые сцинтилляции в наносекундном диапазоне. Результаты были опубликованы в работе [Baryshevsky V. G., Korzhik M. V. et al. // NIM. 1992. Vol. A322. P. 231], открывшей дорогу вольфраматам в физику высоких энергий и ставшей классической. В дальнейшем из-за технологических проблем работы по разработке NaBi(WO₄)₂ были свернуты, а работы по созданию технологии кристаллов вольфрамата свинца PbWO₄ получили активное развитие.

2. Первые тесты кристаллов вольфрамата свинца

Кристалл вольфрамата свинца, на котором были впервые измерены сцинтилляционные свойства этого материала, был получен в НИИ «Монокристаллов» в 1990 г. и изучен в НИИ ЯП. Никто не мог представить, что у этого желтоватого (рис. 1), в общем-то невзрачного кристалла, большое будущее. Первый сцинтилляционный элемент кристалла вольфрамата свинца, содержащий более 10 радиационных длин X_0 , то есть пригодный для тестов на пучках ($20 \times 20 \times 120 \text{ мм}^3$), был изготовлен из кристалла, выращенного в Институте «Монокристалл», г. Харьков (Украина) в начале 1991 г. Он был всесторонне изучен в ИФВЭ на пучках электронов канд. физ.-мат. наук В. А. Качановым (ныне д-р. физ.-мат. наук, вед. научн. сотр.), и данные были представлены широкой научной общественности в ЦЕРНе и международной конференции CRYSTAL 2000, Chamonix, 1992 г. Резонанс научной дискуссии был столь велик, что стало очевидным – у материала есть будущее. Встал вопрос о разработке лабораторной технологии производства кристаллов для обеспечения тестов сцинтилляционными элементами.

Проанализировав все возможности внедрения этого кристалла в промышленность, эксперты ИФВЭ и НИИ ЯП остановились на Богородицком заводе техно-химических изделий (БЗТХИ), с которым в конце 1992 г. был заключен договор на производство первых элементов электромагнитного калориметра из вольфрамата свинца. Уже в марте 1993 г. были изготовлены около 10 ячеек, тесты которых на ускорителе ИФВЭ подтвердили, что материал PbWO₄ обладает уникальной комбинацией свойств – высокой плотностью, быстрозатухающими сцинтилляциями в удобном для фотоприемников спектральном диапазоне,

Рис. 1. Первый сцинтилляционный кристалл вольфрамата свинца

удовлетворительной прозрачностью. Работы по созданию технологии и ее совершенствованию, доведению до уровня спецификации экспериментов на LHC возглавили молодые физик из НИИ ЯП канд. физ.-мат. наук М. В. Коржик (ныне д-р физ.-мат. наук, зав. отделом) и технолог А. А. Анненков, канд. техн. наук, ставший впоследствии техническим директором завода БЗТХИ. Вплоть до 1996 г. ИФВЭ осуществлял методическое руководство и испытания макетов электромагнитных калориметров на основе вольфрамата свинца на ускорителях ИФВЭ и ЦЕРНе, а со вступлением института в коллаборацию СМS сделал весь научный задел достоянием коллаборации. В конце 1993 г. ИФВЭ заключил контракт с Богородицким заводом технохимических изделий на разработку лабораторной технологии и производство около 300 сцинтилляционных кристаллов из РWO для макета калориметра. Завод, ранее бывший флагманом электронной промышленности и основным поставщиком кристаллов ниобата и танталата лития, лишившись основных потребителей в СНГ, находился на грани банкротства. Этот и последующие контракты ИФВЭ спасли его от неминуемой остановки и перепрофилирования. Всего в течение 1993-1995 гг. ИФВЭ выплатил по контрактам БЗТХИ около 400 тыс. долл. США. Это позволило заводу сохранить высокие технологии и, по существу, выжить в очень тяжелых условиях начала 90-х гг. в России.

В 1993–1994 гг. в ЦЕРНе на канале Н8 были проведены тесты макета калориметра, состоящего из 60 ячеек РWO, коллаборацией институтов ИФВЭ, НИИ ЯП и LAPP (France) при поддержке коллаборации ALICE. Костяк команды составили эксперты коллаборации ГАМС, применение богатого опыта которых и предопределило успех испытаний. Результаты оказались столь впечатляющими, что руководство коллаборации CMS вынуждено было полностью пересмотреть концепцию экспериментальной установки и в сентябре 1994 г. принять сцинтиллятор вольфрамата свинца в качестве основы для электромагнитного калориметра.

3. Детекторные свойства кристаллов вольфрамата свинца

РWO – очень плотное вещество ($\rho = 8.28 \text{ г/см}^3$) с наименьшей, среди известных синтетических кристаллов, радиационной длиной ($X_0 = 0.89$ см). Его радиус Мольера (R_M) составляет около 20 мм, что обеспечивает небольшие поперечные размеры электромагнитного ливня и высокую точность измерения координат фотонов (электронов). Свойства кристалла в сравнении со свойствами других сцинтилляторов, применяемых в электромагнитной калориметрии, приведены в таблице.

Материал	р, г/см ³	Х ₀ , см	Выход, фот/МэВ	τ _{<i>cų</i>} , нс	λ _{<i>cų</i>} ,ΗΜ
PbWO ₄	8.28	0.89	200	6	420
Bi ₃ Ge ₄ O ₁₂	7.13	1.12	8200	300	505
CsI	4.51	2.43	16800	10	310
CeF ₃	6.16	1.77	4500	30	330
DoE	1 99	2.03	1430	0.6	220
Ddr ₂	4.00	2.05	9950	620	310

Свойства сцинтилляционных материалов для электромагнитной калориметрии

Энергетическое разрешение РШО калориметра уже при энергии около 30 ГэВ выходит на уровень 0.5 %, а при энергии 1 ГэВ оно менее 2 %.

Точность измерения координат электромагнитного ливня для PWO калориметра лучше 0.5 мм. Сегодня это самая высокая точность, достигнутая в электромагнитной калориметрии при высоких энергиях.

Ливни в тяжелых кристаллах в два раза уже, чем в свинцовом стекле. Из опыта разделения ливней в ГАМС следует, что два фотона (электрона) могут быть надежно разделены в РWO калориметре, при расстоянии между ними около 15 мм. Эта величина критична для экспериментов ALICE и CMS из-за высокой загрузки детекторов частицами.

Первый спектрометр гамма-квантов, состоявший из 150 гексагональных кристаллов РШО, был изготовлен в 1995 г. в рамках подготовки эксперимента НЕПТУН на УНК, совместно с экспериментом ГАМС и размещен в центре гамма-детектора ГАМС-2000 в ИФВЭ. Цель создания – измерение физических характеристик детектора на РШО в реальном эксперименте. Это был последний эксперимент академика РАН Юрия Дмитриевича Прокошкина, который уделял огромное внимание этому новому направлению в электромагнитной калориметрии.

4. Методические исследования кристаллов вольфрамата свинца

При измерениях энергетического и координатного разрешений в области энергии электронов 1–45 ГэВ были получены рекордные для данных кристаллов результаты:

$\sigma(E)/E = 1.8 \%/\sqrt{E} + 0.3 \%$

При энергии 27 ГэВ координатное разрешение $\sigma(x)$ составило 250 мкм на границе двух кристаллов, что соизмеримо с разрешением современных дрейфовых камер. Были проведены также систематические исследования радиационной

121

стойкости кристаллов при их облучении электронами и адронами, а также потоком со смешанным спектром частиц, включавшим заряженные адроны, нейтроны и γ-кванты. Два кристалла были облучены до 3 Мрад, с мощностью дозы 100 крад/час. Оказалось, что при потере до половины света сцинтилляций за счет индуцированного радиацией поглощения центров окраски, энергетическое разрешение ухудшилось всего на 20–30 %.

Учитывая, что температурная зависимость выхода сцинтилляций в кристалле имеет коэффициент 2 % /°С в относительно большом интервале температур, открывается техническая возможность увеличения выхода сцинтилляций за счет понижения его температуры при условии сохранения временного спектра высвечивания сцинтилляций. При температуре несколько ниже 0 °С для таких кристаллов достижимым является световыход 80 фэ/МэВ, а 95 % света импульса сцинтилляций высвечивается за время менее 100 нс. На рис. 2 приведены результаты измерения энергетического разрешения при регистрации γ -квантов, полученные с помощью матрицы 3×3, составленной из кристаллов с улучшенным выходом сцинтилляций с размерами 20×20×200 мм при T = 253 К. Дальнейшее охлаждение кристалла приводит к перераспределению высвеченной светосуммы в пользу медленной компоненты и является нецелесообразным.

Полученное энергетическое разрешение в зависимости от энергии аппроксимируется выражением $\frac{\sigma}{E} = \frac{0.95 \%}{\sqrt{E}} + 0.907 \%$, где энергия γ-квантов выра-

жена в ГэВ. Полученное временное разрешение составило 130 рс для энергий γ -квантов более 25 МэВ. Полученные результаты дают основание утверждать, что сцинтилляционный кристалл вольфрамата свинца при его охлаждении в детекторе до оптимальной температуры позволяет получать энергетическое и временное разрешение лучше, чем с кристаллами CsI и сравнимое с результатами, полученными с кристаллами BF₂ и BGO. Это открыло широкие возможности для применения сцинтилляционного кристалла вольфрамата свинца в экспериментах по физике низких и средних энергий.

В дополнение к экспериментам на LHC, CMS и ALICE, в настоящее время в мире, в различных научных центрах, готовятся следующие эксперименты, где электромагнитные калориметры делаются на основе кристаллов вольфрамата свинца.

Эксперимент коллаборации МЕСО в лаборатории AGS в Брукхейвенской национальной лаборатории (США), который нацелен на поиск нарушения симметрии при преобразовании мюонов в электроны в поле ядра. Электромагнитный калориметр установки состоит из 2300 кристаллов с размерами 30×30×120 мм³.

Эксперимент коллаборации PrimEx в национальной лаборатории им. Джеферсона (США) нацелен на измерение с высокой точностью времени жизни π° через эффект Примакова и будет использовать 1200 РШО кристаллов с размерами $20.5 \times 20.5 \times 180$ мм³.

Рис. 2. Зависимость энергетического разрешения при регистрации γ -квантов, полученное с помощью матрицы 3×3, составленной из кристаллов с размерами $20 \times 20 \times 200$ мм, T = 253K

В эксперименте коллаборации PANDA на многофункциональном детекторе на накопительном антипротонном кольце в GSI (Германия) будет использовано 18000 PWO кристаллов с размерами 27×27×200 мм³.

Рассматривается возможность применения кристаллов вольфрамата свинца на перспективных ускорителях SLHC и ILS, однако это потребует интенсивной НИР по совершенствованию радиационной стойкости кристаллов до уровня менее $0.1 \text{ m}^{-1}/100$ крад.

Монокристалл вольфрамата свинца является перспективным сцинтилляционным материалом для применения в экспериментах по физике частиц высоких энергий. По совокупности параметров является оптимальным для применения в электромагнитной калориметрии на коллайдерах с большой светимостью и высокой частотой столкновения пучков. Применение сцинтиллятора вольфрамата свинца позволяет создавать компактные гомогенные быстродействующие электромагнитные калориметры с удовлетворительным энергетическим разрешением в диапазоне энергий регистрируемых γ-квантов от 50 МэВ.

Результаты исследований описаны экспертами ИФВЭ, НИИ ЯП и их коллаборантами в более чем 200 научных статьях и сборниках, 2 монографиях. По результатам исследований защищены 3 докторских и 8 кандидатских диссертаций.

5. Технология производства кристаллов вольфрамата свинца

Свойства РШО существенно определяются технологией его выращивания и могут меняться в довольно существенных пределах. В исследованиях кристаллов вольфрамата свинца, выполненных в последние 10 лет, можно выделить две стадии. Вплоть до конца 90-х гг. ХХ в. было опубликовано достаточно много экспериментальных данных с различными, часто противоречивыми интерпретациями, носившими явно спекулятивный характер. Однако в это же время путем сопоставления экспериментальных данных были установлены: 1) технологические особенности выращивания кристалла, то есть преимущественная утечка ионов свинца из расплава, а следовательно, дефицит ионов свинца в кристалле, при его получении методом Чохральского; 2) метод одновременной компенсации катионных и анионных вакансий в кристалле посредством активации кристалла ионами со стабильным трехвалентным состоянием; 3) роль ионов Мо в формировании люминесцентных свойств кристаллов вольфрамата свинца и необходимая спецификация по примесным ионам в сырье для выращивания кристаллов; 4) особенности распределения электронной плотности состояний в валентной зоне и зоне проводимости. Это позволило непротиворечиво объяснить такие особенности кристалла, как его окраска, люминесцентные характеристики, изменение спектральных свойств под действием ионизирующего излучения.

Понимание физических процессов, происходящих в кристалле, позволило оптимизировать технологию кристалла и довести ее до уровня спецификации детекторов на LHC. Первой проблемой, которая была успешно решена, – это устранение желтого цвета кристаллов. Поглощение света сцинтилляций внутренними центрами в длинном кристалле создает большую неоднородность световыхода вдоль сцинтилляционного элемента, что ухудшает энергетическое разрешение. Второй решенной проблемой стало устранение в кинетике сцинтилляций медленных компонент. Наконец третьей, наиболее важной из решенных проблем, явилось радикальное улучшение радиационной стойкости кристалла до уровня 1 м⁻¹/100 крад.

Разработанная в России массовая технология производства кристаллов вольфрамата свинца вкратце состоит в следующем. В базовой технологии исходным сырьем являются окислы PbO и WO₃. Из этих порошков готовятся уплотненные таблеты, которые наплавляются в тигли, изготовленные на основе Pt-Al₂O₃. Перед выращиванием производится предварительная перекристаллизация на ростовых установках типа «Лазурит», с использованием платиновых тиглей размером $170 \times 0.9 \times 180$. В качестве затравки используется кристалл вольфрамата свинца, закрепляемый в платиновом охлаждаемом держателе. Выращивание кристаллов вольфрамата свинца проводится в ростовых установках типа «Кристалл ЗМ». В установках этого типа температурный градиент между расплавом и кристаллом создается путем отвода тепла от затравочного кристалла. Растущий кристалл вытягивается из расплава, получаемого высокочастотным нагревом в комбинированном платиновом тигле в заданной газовой среде. Установка автоматически поддерживает заданные скорости вытягивания, скорость вращения и температурный режим.

К технологическим параметрам, определяющим качество кристалла, относятся: 1) состав шихты; 2) состав газовой атмосферы; 3) ориентация затравки относительного кристаллографического направления роста; 4) температура выращивания; 5) скорость выращивания; 6) скорость вращения затравки; 7) скорость охлаждения. Опыты показали, что параметры 4–7 не очень критичны и могут меняться в относительно широких пределах без потери качества. Так, температура выращивания может лежать в пределах 1110–1150 °С, скорость выращивания (вытягивания) – (1–12) мм/час, скорость вращения затравочного кристалла (1–50) об/мин., а скорость охлаждения – не более 150 С/час. Наиболее существенными оказались параметры 1–3. Кристалл выращивался в направлении кристаллографической оси «а». Этот параметр особенно сильно влиял на внутренние напряжения и проявлялся в виде сколов при операциях резки, шлифовки и т. п.

Монокристаллы, выращенные из смеси оксида вольфрама WO₃ и окиси свинца PbO, так же как и монокристаллы, выращенные из смеси оксида вольфрама WO₃ и окиси-закиси свинца Pb₃O₄ в воздушной атмосфере, имеют световыход ~5–8 фотоэлектронов /МэВ. Монокристаллы, выращенные из смеси оксида вольфрама WO₃ и окиси-закиси свинца Pb₃O₄ в атмосфере азота, или аргона с содержанием кислорода от $1^{\cdot}10^{-3}$ до 1 об. %, имеют световыход существенно больше (выше 10 фотоэлектронов/МэВ). Они же имеют и лучшие характеристики пропускания на длине волны 440 нм (длина волны сцинтилляций).

Кристаллизационное оборудование допускает проведение нескольких последовательных кристаллизаций из одного тигля. Масса выращенного кристалла существенно меньше массы шихты, наплавленной в тигель. После добавления в тигель израсходованного количества материалов можно проводить выращивание следующего кристалла. Однако известно, что каждая последующая кристаллизация неизбежно должна изменять свойства кристалла. Понятно, что в массовом производстве экономически невыгодно использовать только одну кристаллизацию. Поэтому важной задачей явилось установление того, насколько сильно меняются свойства кристалла от цикла к циклу и если повторная кристаллизация возможна, то сколько таких циклов можно сделать без потери качества. Оказалось, что при использовании в качестве материалов для синтеза PbO и WO₃, максимальное число кристаллизаций не превышает 6. В то же время использование оптимизированных составов шихты позволяет существенно увеличить число кристаллизаций. Технологический процесс становится более стабильным во времени и появляется возможность использования кристаллов, забракованных по механическим повреждениям, а также отходов резки для повторного использования.

Заключительным этапом в производстве кристаллов является их сертификация, которая производится на автоматизированном оборудовании, разработанном специалистами НИИ ЯП, LAPP (Франция) и ЦЕРНа.

В настоящее время БЗХТИ является основным производителем кристаллов вольфрамата свинца в мире. Каждый месяц производится не менее 1000 сертифицированных сцинтилляционных элементов для комплектования электромагнитного калориметра коллаборации CMS.

6. Заключение

Внедрение сцинтилляционных кристаллов вольфрамата свинца в физику высоких энергий обеспечило ей реальный прорыв в области прецизионной электромагнитной калориметрии. Достаточно дешевый и технологичный при выращивании и обработке кристалл, обладающий уникальными характеристиками (высокая плотность, малая радиационная длина, высокая прозрачность, хорошая радиационная стойкость и высокая скорость высвечивания сцинтилляций), занял лидирующие позиции в электромагнитной калориметрии. Наличие в России больших мощностей для его производства позволяет верить в реальность создания крупнейших электромагнитных калориметров нового поколения. Общая мировая потребность сегодня составляет порядка 100 тыс. кристаллов РШО до 2010 г., основное количество которых было или будет изготовлено в России. Сегодня уже изготовлено более 60 тыс. элементов для CMS и около 10 тыс. для ALICE. Внедрение вольфрамата свинца в экспериментальную физику по праву считается выдающимся достижением последнего десятилетия.

LEAD TUNGSTATE SCINTILLATION CRYSTALS FOR PRECISE ELECTROMAGNETIC CALORIMETRY ON HIGH LUMINOSITY ACCELERATORS

M. V. Korzhik, V. A. Kachanov*, A. N. Annenkov**, O. V. Missevitch, A. A. Fedorov

In the last two decades a new type of the scintillation material namely lead tungstate crystal (PbWO₄, PWO) has been developed. The PWO crystal is a high density, fast and radiation hardness scintillation material. The crystal allows to create new generation of the compact and fast electromagnetic calorimeter with 4π geometry like as CMS Collaboration (100 000 detector units) and PANDA Project (20 000 detector units) to detect γ -quanta and electrons (positrons) in wide energy range, 10 MeV – 1 GeV.

^{*} Institute of High Energy Physics, Protvino.

^{**} Steel and Alloy Technical University. Moscow, Russia.